
Typed Assembly for the Zarf ISA 

Michael Christensen, Joseph McMahan,
Ben Hardekopf, Tim Sherwood

Machine-Checked, Typed, Polymorphic, Functional Assembly Code 



This Talk

● Unpublished
● Thoughts on extensions to our prior work
● Seeing if anyone else cares
● Request for:

○ Feedback
○ Experiences
○ Related work to consider

● Get us thinking about applying PL techniques to the architecture world



Outline

● This Talk
● The Zarf Architecture

○ Untyped Machine
○ Semantics

● Typed Assembly Background
○ Advantages

● Typed Zarf
○ Typed Machine
○ Binary Type-checking Algorithm
○ Some Guarantees Zarf Gets

● The Future, and Why
○ Finding Motivation



The Zarf Architecture for Recursive Functions (ASPLOS 2017)

● An ISA based on the lambda calculus
○ Lambda-lifted, lazy, ANF, WHNF
○ 3 instructions

■ let: stores a thunk
■ case: thunk evaluation to WHNF for matching
■ result: yields value to case

● terminates every instruction branch and function
○ Functions

■ User-defined
■ Builtins (add, mult, xor, etc.)
■ I/O: getint and putint

○ Constructors
■ Named tuples
■ Special error constructor to indicate HW error



Untyped Machine



Semantics



Typed Assembly Background

TAL/TALx86 (Morrisett et al. 1999, Crary et al. 1999):

● High-level lang. compilation target
● Abstraction raised

○ word → integer, pointer, tuple, code 
labels

● Type constructors, parametric poly.
● Preconditions on code labels 

(register types)

STAL (Morrisett et al. 2002)

● Extend TAL with control stack

FunTAL (Patterson et al. 2017)

● Embed assembly in typed 
functional language and vice versa

● Reason about TAL components 
(mult. BBs) and high-level exp

Also:

● PCC (Necula and Lee, 1996)
○ Agent-supplied data/proof that it code 

complies with host’s safety policies

● Typed intermediate languages



Typed Assembly Advantages

● High-level abstractions
○ enforced at machine level
○ can be ensured to be compiled/maintained correctly

● Help optimizations during entire compilation process
● Check untrusted code before running

○ Write in any language as long as it compiles down to TAL

● FunTAL: include speedy low-level operations and maintain guarantees



Typed Machine



Binary Type Checking Algorithm
1. Load argument and return types with type variables
2. For each instruction:

a. If let:
i. Lookup table type

1. Load its expected arguments/fields, with fresh, consistent type variable indices
ii. Lookup argument types in environment (must be variables or primitives)
iii. Check types:

1. Match concrete type constructor
2. Add constraints between type variables

b. If case:
i. Lookup scrutinee type in environment
ii. Lookup data type (if not primitive)

1. Load constructors, assign type of fields to types in scrutinee
iii. Check for totality of matching

c. If result:
i. Unify constraints, replace non-original type variables as needed
ii. Compare result to return type



Some Guarantees Zarf Gets

● Filters our bad behaviors
○ Casing on an underapplied thunk/constructor
○ Passing incorrect arguments, using return value incorrectly
○ Elimination of some runtime error constructors (still array-out-of-bounds possibilities)

● Removes the need for a compiler you totally trust
● All foreign untrusted binaries can be checked

○ Untyped Zarf already prohibits arbitrary control flow and memory access...

● It’s lambda-calculus (basically), so verifying it should be eas(ier)
● Type-checking done in HW; cannot be circumvented

○ no variable length memory structures
○ fixed bit width
○ bounded state machine



Finding Motivation

● Why do we need another typed assembly?
● Is there a meaningful decrease in proof complexity by using Zarf?
● Is hardware type-checking feasible for a non-trivial type system?
● Is our type system expressive enough?
● What kind of type system do you want?
● What kind of errors do you want to prevent?
● Ideas and future work:

○ Implement on hardware (currently in our simulator)
○ Proofs
○ Dependent types
○ Effects
○ Use Zarf as an IR



Questions
(and maybe answers)


