
PyLSE: A Pulse-Transfer Level Language for
Superconductor Electronics

Michael Christensen
Department of Computer Science

UC Santa Barbara
USA

mchristensen@cs.ucsb.edu

Georgios Tzimpragos
Department of Computer Science

UC Santa Barbara
USA

gtzimpragos@cs.ucsb.edu

Harlan Kringen
Department of Computer Science

UC Santa Barbara
USA

kringen@cs.ucsb.edu

Jennifer Volk
Department of Electrical and

Computer Engineering
UC Santa Barbara

USA
jevolk@ucsb.edu

Timothy Sherwood
Department of Computer Science

UC Santa Barbara
USA

sherwood@cs.ucsb.edu

Ben Hardekopf
Department of Computer Science

UC Santa Barbara
USA

benh@cs.ucsb.edu

Abstract
Superconductor electronics (SCE) run at hundreds of GHz
and consume only a fraction of the dynamic power of CMOS,
but are naturally pulse-based, and operate on impulses with
picosecond widths. The transiency of these operations neces-
sitates using logic cells that are inherently stateful. Adopting
stateful gates, however, implies an entire reconstruction of
the design, simulation, and verification stack. Though chal-
lenging, this unique opportunity allows us to build a design
framework from the ground up using fundamental principles
of programming language design. To this end, we propose
PyLSE, an embedded pulse-transfer level language for su-
perconductor electronics. We define PyLSE through formal
semantics based on transition systems, and build a frame-
work around them to simulate and analyze SCE cells digitally.
To demonstrate its features, we verify its results by model
checking in UPPAAL, and compare its complexity and timing
against a set of cells designed as analog circuit schematics
and simulated in Cadence.

CCSConcepts: •Hardware→Hardware description lan-
guages and compilation; Emerging technologies; • Theory
of computation→ Timed and hybrid models.

Keywords: superconductor electronics, hardware descrip-
tion language, timed automata

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523438

ACM Reference Format:
Michael Christensen, Georgios Tzimpragos, Harlan Kringen, Jen-
nifer Volk, Timothy Sherwood, and Ben Hardekopf. 2022. PyLSE:
A Pulse-Transfer Level Language for Superconductor Electronics.
In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI ’22),
June 13–17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3519939.3523438

1 Introduction
Superconductor electronics (SCE) are a promising emerging
technology for the post-Moore era — especially for large-
scale [23], machine learning [26, 52], and quantum [22, 34]
computing systems — due to their energy-efficient inter-
connects and sub-attojoule ultra-high-speed switching [24].
However, the physical properties that make SCE so promis-
ing also make them difficult to design for. In particular, SCE
use a pulse-based, rather than voltage level-based, informa-
tion encoding. This, along with the stateful nature of super-
conducting cells [47] and the lack of a uniformly agreed-
upon efficient translation from design to implementation,
makes it necessary to develop unique logic gates and design
rules [11, 52, 54].
The primary question we seek to answer in this paper

is: what is a suitable abstraction for precisely defining the
functional and timing behavior of SCE designs? Our solution
is to completely depart from existing hardware description
languages (HDLs) and instead take a bottom-up approach to
build a new Python [41] embedded domain-specific language
(DSL) called PyLSE (Python Language for Superconductor
Electronics). We argue that PyLSE is well-tailored to the
unique needs of SCE, making it easier to create and compose
cells into correct and scalable systems.
Inspired by the theory of automata [25], we propose a

custom finite state machine (FSM) abstraction, which we
call a PyLSE Machine and which forms the core our PyLSE
language. This FSM abstraction allows the description of

https://orcid.org/0000-0002-7614-5295
https://orcid.org/0000-0002-0127-4703
https://orcid.org/0000-0001-5244-2861
https://orcid.org/0000-0002-6550-6075
https://doi.org/10.1145/3519939.3523438
https://doi.org/10.1145/3519939.3523438

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

(a) CMOS: Steady voltage levels
encode information; thus, wires
are considered stateful and the
gates stateless.

(b) SFQ: Transient pulses encode
information; thus, wires are con-
sidered stateless and the gates
stateful.

Figure 1. Information representation in CMOS and SFQ.

the functional and timing behavior of SCE cells without
the complex and error-prone conditional assignments com-
monly found in state-of-the-art approaches [37] Through
this abstraction, we also develop a new link between SCE
and the theory of Timed Automata (TA) [2], which enables
the integration of PyLSE with modern formal verification
tools like the UPPAAL model checker [7]. Overall, the main
contributions of this paper are:
• We create the PyLSE Machine, a language abstraction
for the formalization of the functional and timing se-
mantics of pulse-based circuits (Section 3).
• We create PyLSE, a lightweight transition system-based
Python DSL for the rapid prototyping of pulse process-
ing systems, modeled as networks of PyLSE Machines
(Section 4).
• We automate the translation of PyLSE Machines to
Timed Automata (Section 4).
• We build a multi-level framework for the simulation
and analysis of PyLSE Machine systems, which also
allows for the integration of abstract behavioral soft-
ware models, fostering agile development (Section 4).
• We evaluate PyLSE’s capabilities through a series of
comparisonswith state-of-the-art approaches, dynamic
checks of SCE designs with stochastic timing behav-
iors, and formal verification using UPPAAL (Section 5).

2 Defining Computation on Pulses
2.1 Functional Behavior
Superconductor electronics exploit the unique properties of
superconductivity [14, 27] to perform computation through
the carefully orchestrated consumption and emission of indi-
vidual packets of magnetic energy, which manifest as single
flux quanta (SFQ) pulses [31]. While the quantum nature of
such flux exchange is central to the device operation, the com-
putation performed is strictly classical. Information moves
between logic elements in the same “feed-forward” way as
traditional digital logic. However, the use of picosecond-scale
SFQ pulses, rather than the sustained voltage levels of CMOS
(see Figure 1a), has myriad downstream effects. Most notably,
SFQ cells1 must be designed to “remember” that a particular
input has arrived (see Figure 1b).
1We use “cell,” “gate,” and “element” interchangeably throughout.

(a) Schematic (b) Mealy machine

Figure 2. Schematic andMealymachine description of a Syn-
chronous And Element. Labels a arrived and b arrived in
the schematic are locations of superconducting loops holding
state and roughly correspond to states in the Mealy machine.

The SCE community has traditionally relied on low-level
analog models for the design and analysis of basic SCE cells.
However, the growing interest of digital designers in SCE
means that there is an increased need for new abstractions
that are more suitable for scaling SCE system design and
analysis. One abstraction commonly used to explain the
stateful behavior of SCE cells is the Mealy machine [35].
Mealy machines have been used extensively to model SCE
cells [19, 31, 52–54, 60]. For example, Figure 2b describes the
functionality of a Synchronous And Element without the
low-level circuit details of Figure 2a.

2.2 Timing Behavior
A depiction of the Synchronous And Element waveform
is shown in Figure 3. Its hold and setup times, as well as
its propagation delays, are defined similar to convention.
Namely, setup time and hold time are defined as the intervals
before and after the clock in which no pulses should arrive,
respectively [29, 30]. In this figure, event 1 indicates a hold
time violation by input A while event 2 indicates a setup
time violation by Input B. Each of these events may cause
a pulse to be dropped or the cell to enter a metastable state.
Propagation delay measures the time between the arrival
of a pulse that will trigger an output and the generation of
the actual output pulse – in the case of a Synchronous And
Element, it is measured from the arrival of the clock pulse
to the output pulse (event 3).
Because Mealy machines lack an explicit notion of time,

they fall short when constraints on the relative arrival times
of inputs must be part of the functional description. These
and other timing restrictions need to be carefully thought
through and should be captured as early in the design process
as possible. A good language abstraction must therefore treat

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Figure 3. Waveform for the Synchronous And Element
showing the timing constraints that must be met for cor-
rect operation. Pulses that arrive during the hold time 1 or
setup time 2 are erroneous. Assuming these timing viola-
tions do not occur, a pulse is produced some propagation
delay 3 after a clock pulse.

time as a central, first class concern and provide mechanisms
for (1) easily defining timing constraints and (2) verifying
the absence of violations in the system.

3 Overview of the PyLSE Machine
There are four key pieces of information that must be cap-
tured by any new abstraction for superconductor technology:

1. The state transition time;
2. The prioritization of simultaneous input signals;
3. The propagation time per cell; and
4. The time windows for valid inputs.
We use the Mealy machine as a base for this new PyLSE

Machine abstraction and augment its edges to cover the
timing properties and constraints discussed in Section 2.
These augmented edges consist of three parts: the Trigger
(which includes input, priority, and transition times), the
FiringOutputs (which associates each output with its firing
delay), and Past Constraints (which is a way to specify the
legal relative arrival times of wires); the details of each are
found in Figure 4. The machine must be fully-specified such
that for all states, all inputs are associated with edges.

To show how the proposed extension transforms a Mealy
machine, like that shown in Figure 2b, into a PyLSE Machine,
we use the Synchronous And Element2 as a running example.
More specifically, to highlight how the features of Figure 5
can be used to express the setup and hold time constraints
and propagation delay of this cell, we dissect the edge (col-
ored in gold) that connects the a and b arrived state to
idle (CLK0𝜏hold/{𝑄𝜏prop }/{*𝜏setup }).

2The Synchronous And Element assumes an RSFQ [31] encoding in which
the presence of a pulse on an output between clock pulses encodes a 1 and
the absence of a pulse encodes a 0, although other pulse-to-value mappings
such as temporal [52] and xSFQ [54] are possible and work in PyLSE.

Figure 4. Anatomy of a PyLSE Machine transition. The ar-
rival of an input pulse on wire ATriggers the transition from
the source to dest state. This transition has priority 𝑁 over
other simultaneously-triggered transitions originating from
source and takes 𝜏tran time to complete; during this period,
receiving any inputs is illegal. A pulse for each output Q in
the Firing Outputs set appears on their associated output
wire some 𝜏fire time units later. Finally, according to the
Past Constraints, if it’s been less than 𝜏dist since the last
time an input B was received during a previous transition, it
is an error. A𝑁𝜏tran is shorthand for A𝑁𝜏tran/∅/∅.

Transition Time. The Trigger portion indicates that a
state transitionwill occur upon the arrival of CLK. The amount
of time required for this transition to complete is 𝜏hold time
units. Moreover, to model the hold time constraint of Figure
3, we set 𝜏tran B 𝜏hold and therefore consider the arrival of
any other input pulse during this transitionary period illegal.

Priorities: TheTrigger portion also indicates the priority
among the edges departing from the same node. For example,
the highlighted edge has a priority of 0. This implies that
even if the machine received A, B, and CLK simultaneously, it
will always handle the transition associated with CLK first.
Once this transition completes and the machine settles into
the idle state, an arbitrary choice between A and B is made,
because both of them have the same labeled priority of 1. We
note that although it is practically impossible to arrange for
SFQ pulses to purposefully arrive “simultaneously,” it is not
uncommon to consider models of gates with coarse timing.

Figure 5. PyLSE Machine for the Synchronous And Element.
Using transition time, we can model the hold time 𝜏hold and
using the past constraints, we can model the 𝜏setup time.
Firing delay directly models the propagation delay 𝜏prop.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

In this case, priorities let the designer identify and explicitly
handle cases of simultaneous arrivals deterministically.

Multi-Output: To model arbitrary SFQ cells, we should
also be able to associate a set of outputs with each edge and
define their timing; the Firing Outputs portion does just
that. As can be seen in the provided example, the singleton
set {𝑄𝜏prop } indicates that an output pulse will be emitted
during this state transition. The time that it will take for this
pulse to appear is 𝜏prop time units. Therefore, we can use the
edge’s firing delay to model the cell’s propagation delay; e.g.,
by setting 𝜏fire B 𝜏prop.

Constraints on Past: The Past Constraints portion is
used to model the setup time constraint; e.g., by setting
𝜏dist B 𝜏setup. In the provided example, any input pulse
(indicated by the *) that appears within 𝜏setup time units
after the arrival of CLK is considered illegal.

3.1 Formalization of the PyLSE Machine
In this section, we define PyLSE Machines, their semantics,
and how they interact in larger designs.

Definition 3.1 (PyLSE Machine). A finite state machine
with timed prioritized transitions, an output set, and past
constraints, which we call a PyLSE Machine, is a tuple𝑀 =

⟨𝑄,𝑞init, Σ,Λ, 𝛿, 𝜇, 𝜃⟩, where
(𝑞 ∈)𝑄 is a set of states

𝑞init ∈ 𝑄 is the initial state
(𝜎 ∈)Σ is a set of input symbols
(𝜆 ∈)Λ is a set of output symbols

𝛿 : 𝑄 × Σ→ 𝑄 × N × R is the transition function
𝜇 : 𝑄 × Σ→ P(Λ × R) is the output function
𝜃 : 𝑄 × Σ→ P(Σ × R) is the past constraints function

We write𝑀.Σ to extract Σ, and likewise𝑀.Λ for Λ.

The first three domains — 𝑄 , Σ, and Λ — are similar to a
typical Mealy machine definition. The transition function 𝛿

maps a state and input symbol to (1) the next state it should
transition to, (2) a natural number corresponding to the pri-
ority of that transition, and (3) a real number corresponding
to the physical time it takes to complete. The output function,
𝜇, maps tuples of states and inputs to sets of tuples consisting
of output symbols and the time it takes for them to appear
(i.e. a firing delay). The past constraints function 𝜃 maps the
current state and input to a input–real number tuple. This
tuple indicates a precondition for the given transition to be
allowed to proceed (specifically, the setup time constraint).
The transition semantics of our PyLSE Machine is found

in Figure 6. To define the semantics, we use a configuration
𝜅 ∈ K = 𝑄×R×(Σ→ R), parameterized over a current state
𝑞 ∈ 𝑄 , a real-valued time 𝜏done, and a mapping Θ : Σ → R
that associates each input with the last time it was seen.

This is written as 𝜅 ⟨𝑞,𝜏done,Θ⟩ , with the 𝜏done being used to
represent the end of the unstable period during which time
the machine is transitioning. The initial configuration is
𝜅𝑀init = 𝜅 ⟨𝑞init,0,{𝜎 ↦→−∞|𝜎 ∈𝑀.Σ}⟩ .

Transition Relation. Given the current configuration
𝜅 ⟨𝑞curr,𝜏done,Θ⟩ , the Transition Relation is interpreted as fol-
lows. If the machine receives an input 𝜎 at time 𝜏arr and
it has been long enough to have finished entering state
𝑞curr (i.e. 𝜏arr ≥ 𝜏done), it proceeds to a new configuration
𝜅 ⟨𝑞next,𝜏′done,Θ′⟩ . It does so by remembering (1) the next state
𝑞next, (2) the time at which the new transition should be com-
pleted 𝜏 ′done = 𝜏tran +𝜏arr, and (3) the time it saw this current
input, via Θ′ = Θ[𝜎 ↦→ 𝜏arr] (see Normal-𝜅). Otherwise, if
it is not yet ready to receive inputs because 𝜏arr < 𝜏done (see
Error-𝜅 Tran) or because any input 𝜎 ′ was received less
than 𝜃 (𝑞, 𝜎 ′) + 𝜏dist ago (see Error-𝜅 Cons), it proceeds to
the special 𝑞err state. 𝑞err is the target state of any transition
whose timing conditions can’t be satisfied.

Dispatch and Trace Relations. The Dispatch Relation
enables the machine to continue processing inputs. It works
by retrieving the highest priority transition that leaves 𝑞curr
for all the inputs 𝜎 in the set of simultaneous inputs ⇀

𝜎 arriv-
ing at 𝜏arr. It chooses one nondeterministically if multiple
candidate transitions have the same priority. The Trace Rela-
tion is used to determine the outputs that result from running
the Dispatch Relation over the entirety of the inputs.

3.2 Formalizing a Network of PyLSE Machines
While each individual PyLSE Machine models a particular
type of SCE cell, a network of communicating PyLSE Ma-
chines models a larger design.

Definition 3.2 (Network Domain of PyLSE Machines). A
network of PyLSE Machines, which we call a circuit, is a
tuple𝐶 = ⟨

⇀

𝑀,
⇀
𝑤, Σ,Λ⟩ composed of a set of PyLSE Machines

⇀

𝑀 (accessed as 𝐶.machines), a set of connective wires ⇀
𝑤

(accessed as 𝐶.wires), and a set of circuit inputs 𝐶.Σ and
outputs 𝐶.Λ. A wire is a tuple 𝑤 = ⟨𝛼, 𝛽⟩ such that 𝛼 ∈
𝑀 ′.Λ

⋃
𝐶.Σ and 𝛽 ∈ 𝑀 ′′.Σ⋃

𝐶.Λ for some𝑀 ′, 𝑀 ′′ ∈
⇀

𝑀 .

Network Relation. The Network Relation of Figure 6
shows the semantics of how a sequence of externally de-
rived time-tagged pulses 𝑡𝑠 propagate through the network.
We define an initial circuit configuration 𝜅𝐶init , composed of
(1) all individual PyLSE Machine initial configurations ⇀

𝜅

and (2) a list of input pulses 𝑝𝑠 tagged with the wires where
they are headed, i.e. 𝜅𝐶init = ⟨

⇀
𝜅 , 𝑝𝑠⟩, where ⇀

𝜅 = {𝜅𝑀init
��𝑀 ∈

𝐶.machines} and 𝑝𝑠 = {⟨𝜎 ′, 𝜏arr⟩
��⟨𝜎, 𝜏arr⟩ ∈ 𝑡𝑠 ∧ ⟨𝜎, 𝜎 ′⟩ ∈

𝐶.wires}. The network proceeds until there is no more work
to do, such that ⟨𝜅𝐶init, 𝑝𝑠⟩ ↠net ⟨𝜅𝐶

′
, 𝑝𝑠 ′⟩. In other words, all

pending pulses in 𝑝𝑠 are directed toward the circuit output.

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Transition Relation −→tran⊆ K × Σ × R × (K ∪ {𝑞err})

⟨𝑞next, _, 𝜏tran⟩ = 𝛿 (𝑞curr, 𝜎) 𝜏arr ≥ 𝜏done ∀⟨𝜎 ′, 𝜏dist⟩ ∈ 𝜃 (𝑞curr, 𝜎), 𝜏arr ≥ Θ[𝜎 ′] + 𝜏dist

𝜅 ⟨𝑞curr,𝜏done,Θ⟩
⟨𝜎,𝜏arr ⟩−−−−−−−→tran 𝜅 ⟨𝑞next,𝜏tran+𝜏arr,Θ[𝜎 ↦→𝜏arr] ⟩

(Normal-𝜅)

𝜏arr < 𝜏done

𝜅 ⟨𝑞curr,𝜏done,_⟩
⟨𝜎,𝜏arr ⟩−−−−−−−→tran 𝑞err

(Error-𝜅 Tran)
∃⟨𝜎 ′, 𝜏dist⟩ ∈ 𝜃 (𝑞curr, 𝜎), 𝜏arr < Θ[𝜎 ′] + 𝜏dist

𝜅 ⟨𝑞curr,𝜏done,Θ⟩
⟨𝜎,𝜏arr ⟩−−−−−−−→tran 𝑞err

(Error-𝜅 Cons)

Dispatch Relation Trace Relation
→𝑑𝑖𝑠𝑝⊆ K × (P(Σ) × R) × K × (P(Σ) × R) × P(Λ × R) y

trace ⊆ K × (P(Σ) × R) × K × P(Λ × R)

𝜎 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛

𝜎′∈⇀𝜎
(𝜋2 (𝛿 (𝑞curr, 𝜎 ′)) 𝑜𝑢𝑡𝑠 = 𝜇 (𝑞curr, 𝜎)

𝜅 ⟨𝑞curr,_,_⟩
⟨𝜎,𝜏arr ⟩−−−−−−−→tran 𝜅𝑛𝑒𝑥𝑡

⇀
𝜎 𝑟𝑒𝑠𝑡 =

⇀
𝜎 /𝜎〈

𝜅 ⟨𝑞curr,_,_⟩, ⟨
⇀
𝜎 , 𝜏arr⟩

〉
→𝑑𝑖𝑠𝑝

〈
𝜅𝑛𝑒𝑥𝑡 , ⟨

⇀
𝜎 𝑟𝑒𝑠𝑡 , 𝜏arr⟩

〉��𝑜𝑢𝑡𝑠
〈
𝜅, ⟨⇀𝜎 , 𝜏arr⟩

〉
→𝑑𝑖𝑠𝑝

〈
𝜅 ′, 𝑥𝑠

〉��𝑜𝑢𝑡𝑠 〈
𝜅 ′, 𝑥𝑠

〉y
trace

〈
𝜅 ′′, 𝑜𝑢𝑡𝑠 ′

〉
𝑜𝑢𝑡𝑠 ′′ = 𝑜𝑢𝑡𝑠 + 𝑜𝑢𝑡𝑠 ′〈

𝜅, ⟨⇀𝜎 , 𝜏arr⟩
〉y

trace

〈
𝜅 ′′, 𝑜𝑢𝑡𝑠 ′′

〉 (Trc-Cont)

〈
𝜅, ⟨∅, _⟩

〉y
trace

〈
𝜅,∅

〉 (Trc-Done)Network Relation →net ⊆ P(K) × (Σ × R)∗ × P(K) × (Σ × R)∗〈
⟨⇀𝜎 , 𝜏arr⟩𝑀 , 𝑝𝑠 ′

〉
= getSimPulses(𝑝𝑠) 𝜅𝑀 ∈

⇀
𝜅

⟨𝜅𝑀 , ⟨⇀𝜎 , 𝜏arr⟩𝑀 ⟩ytrace ⟨𝜅 ′𝑀 , 𝑜𝑢𝑡𝑠⟩ ⇀
𝜅
′
=

⇀
𝜅 [𝜅 ′

𝑀
/𝜅𝑀] 𝑝𝑠 ′′ = 𝑝𝑠 ′ + 𝑜𝑢𝑡𝑠

⟨⇀𝜅 , 𝑝𝑠⟩ →net ⟨
⇀
𝜅
′
, 𝑝𝑠 ′′⟩

(Net-Cont) ∀⟨𝜎, 𝜏arr⟩ ∈ 𝑝𝑠. 𝜎 ∈ 𝐶.Λ
⟨_, 𝑝𝑠⟩ →net ⟨_, 𝑝𝑠⟩

(Net-Done)

Figure 6. Semantics of the Transition, Dispatch, and Trace relation of the PyLSE Machine ⟨𝑄,𝑞0, Σ,Λ, 𝛿, 𝜇⟩ as well as the
Network relation for larger composite designs. 𝜋𝑖 (⟨..., 𝑥𝑖 , ...⟩) = 𝑥𝑖 is standard tuple projection. Θ[𝜎 ↦→ 𝜏] produces an updated
mapping where 𝜎 now maps to 𝜏 . We use 𝑆 [𝑦/𝑥] to denote 𝑦 replacing 𝑥 in 𝑆 . The helper function getSimPulses extracts the
pulse heap 𝑝𝑠 into the earliest set of simultaneous pulses destined for the same PyLSE Machine and the rest for later use. If
both 𝑥 and 𝑦 are heaps of pulses, we use 𝑥 + 𝑦 to denote merging them into a single ordered heap.

Nondeterminism occurs when there are multiple simultane-
ous pending pulses on the heap 𝑝𝑠 going to different PyLSE
Machines; the helper function getSimPulses chooses one
before proceeding with the next.

4 PyLSE Language Design
We use the above PyLSE Machine formalism to develop a
practical embedded DSL that eases the description and anal-
ysis of SCE designs at multiple levels.3 Its abstract syntax is
found in Figure 7. By being embedded in Python, we lower
the barrier of entry for new users and gain the productivity
benefits of using Python’s libraries.

4.1 Design Levels

Cell Definition Level: Given that there is still no domi-
nant logic scheme for SCE designs, the ability to easily de-
fine new cells is crucial for the advancement of the field. We
enable this by providing a Transitional Python abstract
class. Each SCE cell is modeled as a class that implements
Transitional, defining the set of input and output names
3The language implementation is available at https://github.com/
UCSBarchlab/PyLSE.

pt ∈ Port st ∈ State 𝜎 ∈ Store e ∈ Exp n ∈ Z 𝜏 ∈ Time

p ∈ ProgramF ins pt+ outs pt+ cells cell+ conns 𝑐𝑜𝑛+

cell ∈ Cell F pm | h
pm ∈ PyLSEMachine F states st+ start st

ins 𝑝𝑡+ outs 𝑝𝑡+ edges ed+

h ∈ Hole F ins pt+ outs pt+ func (𝜆 pt+ 𝜎 𝜏 .𝑒)
ed ∈ Edge F priority n src st dest st trigger pt

transtime 𝜏 firing 𝜇 constraints 𝜃
con ∈ ConnectionF m.pt ← m.pt

m ∈ Entity F cell | p
𝜇, 𝜃 ∈ TimingMap F [pt B 𝜏]∗

Figure 7. The Abstract Syntax for the PyLSE language. A
program is a collection of input and output ports, cells, and
connections between them.

and a list of transitions as class attributes. Each transition
in this list is represented as a Python dictionary, storing
key-value pairs matching the information found in Figure 4.

https://github.com/UCSBarchlab/PyLSE
https://github.com/UCSBarchlab/PyLSE

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

class AND(SFQ):
_setup_time, _hold_time = 2.8, 3.0
name = 'AND'
inputs, outputs = ['a', 'b', 'clk'], ['q']
transitions = [

{'src': 'idle', 'trigger': 'clk', 'dst': 'idle',
'transition_time': _hold_time,
'past_constraints': {'*': _setup_time}},
{'src': 'idle', 'trigger': 'a', 'dst': 'a_arr'},
{'src': 'idle', 'trigger': 'b', 'dst': 'b_arr'},
{'src': 'a_arr', 'trigger': 'b', 'dst': 'ab_arr'},
...
{'src': 'ab_arr', 'trigger': 'clk', 'dst': 'idle',
'transition_time': _hold_time, 'firing': 'q',
'past_constraints': {'*': _setup_time}},
{'src': 'ab_arr', 'trigger': ['a', 'b'],
'dst': 'ab_arr'},

]
jjs, firing_delay = 11, 9.2

Figure 8. Synchronous And Element PyLSE code. Transi-
tions have been omitted in the space marked

To better understand the structure of PyLSE, we revisit
the Synchronous And Element gate, originally described in
Figure 5 and analyzed in Section 3.1. The PyLSE code for this
cell is provided in Figure 8. It implements an abstract class
SFQ, which is a child of the Transitional class mentioned
previously. The SFQ class’s purpose is to require additional
attributes specific to SFQ cell design from its implementing
classes. In particular, it requires that the jjs (the number
of Josephson junctions) and firing_delay attributes exist
on the class. jjs is an area metric based on the number of
switching elements used by the design.

The priorities of transitions can be given explicitly, via the
priority key in each transition dictionary, or implied by the
order in which they are listed. For example, in the case of the
Synchronous And Element, the transition leaving idle on
clk is given before the transition leaving idle on a. Thus, the
former’s trigger has priority over the latter’s. This priority
order is isolated to transitions with the same source state.
For example, the first and fourth transitions have different
source states (idle and a_arrived, respectively), and thus
their relative order in this list of transitions is irrelevant.

PyLSE contains a library of all the basic SCE cells [4] and
provides templates for the creation of custom ones.

Hole Description Level: To facilitate the rapid prototyp-
ing and exploration of more complicated designs without
the need to describe every single block via interacting tran-
sition systems, PyLSE provides the Hole Description Level.
At this level, pure Python code is wrapped in a specialized
interface (by implementing a Functional abstract class),
allowing non-transition-based abstract “holes” to communi-
cate via pulses with the rest of the system. The Functional

mem = defaultdict(lambda: 0)
raddr = waddr = wenable = data = 0

@pylse.hole(delay=5.0, inputs=['ra3', 'ra2', 'ra1',
'ra0', 'wa3', 'wa2', 'wa1', 'wa0', 'd1', 'd0',
'we', 'clk'], outputs=['q1', 'q0'])

↩→
↩→
def memory(ra3, ra2, ra1, ra0, wa3, wa2, wa1, wa0,

d1, d0, we, clk, time):
nonlocal raddr, waddr, wenable, data
raddr |= ra3*8 + ra2*4 + ra1*2 + ra0
waddr |= wa3*8 + wa2*4 + wa1*2 + wa0
data |= d1*2 + d0
wenable |= we
if clk:
if wenable:

mem[waddr] = data
value = mem[raddr]
raddr = waddr = wenable = data = 0

else:
value = 0

return ((value >> 1) & 1), value & 1

Figure 9. An example Functional (“hole”) element model-
ing a memory with 16 addresses, each storing 2 bits.

class takes as initialization parameters (1) a Callable func-
tion mapping time-tagged input pulses to output pulses, (2)
the list of input and output names, and (3) the firing delay
for each output. The user can also simply wrap a Python
function (with the appropriate signature) using the hole
decorator. Note that these holes do not abide by the formal
semantics of Section 3.

An example functional element is found in Figure 9, which
shows how to create a memory by wrapping a Python dic-
tionary in a function with a pulse-communicating interface.

Figure 10. Graphical results of simulating the memory
Functional class.

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(a) Block diagram.

from pylse import s, c, c_inv, jtl
def min_max(a, b):

a0, a1 = s(a)
b0, b1 = s(b)
low = c_inv(a0, b0)
high = c(a1, b1)
high = jtl(high, firing_delay=2.0)
return low, high

(b) PyLSE code.

Figure 11.Min-max pair. Inputs a and b are duplicated by
the splitters. a0 and b0 enter the Inverted C Element, which
propagates an output pulse on low some delay after the first
of its inputs arrive. a1 and b1 are fed into the C Element,
whose output is delayed via a Josephson transmission line
(for path balancing) before being emitted as the high output.
The 2.0 JTL delay has been calculated based on the difference
in delays between the paths to low and to high, assuming a
splitter delay of 11, C Element delay of 12, and Inverted C
Element delay of 14. Thus, given low, high = comp(a, b),
the earlier input pulse propagates to low after 11 + 14 = 25
ps and the latter to high (likewise after 11 + 12 + 2 = 25 ps).

This function, memory(), takes in twelve boolean-valued
arguments and a thirteenth argument, time, which is implic-
itly passed as the last argument to all functional elements.
The read and write addresses, ra* and wa*, are split into
four 1-bit inputs. A pair of nonlocal variables raddr and
waddr are used to remember which address bits have been
seen since the last clock pulse. If write is enabled when a
clock pulse arrives, the memory is updated, the newly read
value is produced as tuple of 1-bit values, and raddr and
waddr are reset, ready for the next period. The arguments
are internally connected to PyLSE Wires in the network. The
framework automatically converts the presence of a pulse on
one or more of these wires at a particular instant as a call to
memory(), passing a value of 1 for each of the corresponding
arguments, and the current time. Figure 10 shows the result
of simulating the memory against a variety of inputs.

Full-Circuit Design Level: Nodes of Transitional and
Functional class instances are interconnected with Wires
and added to the circuit workspace at the Full-Circuit De-
sign level. The code in Figure 11b provides an example of a
Min-Max pair implemented with two splitters, a C Element,
an Inverted C Element, and a JTL 4 following recently in-
troduced temporal conventions [52]. Calling the function
min_max(a,b) causes its constituent cells and connective
wires to be instantiated via the calls to the encapsulating
functions s, c, c_inv, and jtl. These functions take in wire
objects and return one or more output wire objects as result.
This encapsulation enables basic cells to resemble Python
4At a very high level, a JTL is a basic cell used for connecting other cells
over larger distances, in turn adding delay to a design.

1 from pylse import inp_at, inp, and_s, Simulation
2 a = inp_at(125, 175, 225, 275, name='A')
3 b = inp_at(75, 185, 225, 265, name='B')
4 clk = inp(start=50, period=50, n=6, name='CLK')
5 out = and_s(a, b, clk, name='Q')
6 sim = Simulation()
7 events = sim.simulate()
8 assert events['Q'] == [209.2, 259.2, 309.2]
9 sim.plot()

(a) Exhaustively simulating a Synchronous And Element.

(b) Simulation result in graphical form.

Figure 12. Simulation of the Synchronous And Element.
Pulses occur on wires A at 125.0, 175.0, 225.0, and 275.0; B at
75.0, 185.0, 225.0, and 265.0; and CLK every 50.0 ps. We check
for expected pulses on Q 9.2 ps (the firing delay) after a clock
period in which both A and B were received.

operators and improve language usability by updating the
circuit workspace automatically. These functions also take in
optional arguments, making it easy to override properties like
firing delay, transition time for arbitrary transitions, and the
number of Josephson junctions used in a particular element
instance. At this level, full application implementations can
be realized through the technique of elaboration-through-
execution [3, 9, 13], although here, unlike traditional HDLs,
the underlying primitives used by higher level generators
are inherently stateful and pulse-based.

4.2 Syntactic and Semantic Checks
PyLSE provides several syntactic and semantic checks to

alert the user if a design is ill-formed. At the Cell Definition
level, PyLSE ensures that the list of a cell’s transitions consti-
tute a well-formed transition system. This includes ensuring
the use of recognized field names, references to valid input
triggers and output signal names, and the inclusion of an
idle starting state. More advanced checks include the com-
plete specification of transitions for every possible trigger
and that an output occurs on at least one transition.
At the Circuit Design level, we currently check that all

circuit outputs have a “fanout” of one. In SCE, the outputs
of arbitrary cells cannot immediately be shared by multiple

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

Table 1. Functions used in the code in Figure 12a. The first four return a named wire, while simulate() returns a mapping
from each named wire to the ordered list of pulses that appeared on it. The last two are methods on the Simulation class.

Function Description
inp_at(*times, name=None) Produce pulses at each time in *times.
inp(start=0, period=0, n=1, name=None) Produce pulses starting at start, occurring n more times every period picoseconds.
split(wire, n=2, names=None, **overrides) Split a wire n ways, creating n-1 splitter elements in a binary tree.
inspect(wire, name) Give a wire a name for observation during simulation.
simulate(self, until, variability=False) Simulate the circuit until a certain time or all pulses are processed.
plot(self) Produce a graph plotting the pulses against time.

inputs; instead, a splitter cell must be used, which is specifi-
cally designed to forward an incoming pulse to two different
outgoing wires. The example in Figure 11b includes two split-
ter cells (lines 3 and 4) to allow a and b to be used in two
different places; PyLSE reports an error on instantiation if,
for example, input a is used in both lines 5 and 6.

4.3 Simulation
PyLSE’s built-in simulator can be used to validate designs
for a given set of input signals. Its design follows the princi-
ples of other discrete-event simulation frameworks [32]. So,
according to the semantics provided in Figure 6, it maintains
a priority heap of pending pulses tagged with their destina-
tion cells. These pulses are extracted from the heap one at
a time and propagate through the PyLSE circuit under test.
Any newly generated pulses get pushed into the heap and
the process continues iteratively until the heap is empty or
the user-defined target time is reached. This target time is
needed when there are loops in the system.

b = inp_at(99, 185, 225, 265, name='B')
...
events = sim.simulate()

pylse.pylse_exceptions.PylseError: Error while sending
input(s) 'clk' to the node with output wire '_0':
Prior input violation on FSM 'AND'. A constraint on
transition '7', triggered at time 100.0, given via the
'past_constraints' field says it is an error to trigger
this transition if input 'b' was seen as recently as
2.8 time units ago. It was last seen at 99.0, which is
1.7999999999999998 time units to soon.

Figure 13. Changing the first time at which a pulse is pro-
duced on B in the simulation of Figure 12a rightfully results
in a past constraint error due to the setup time.

Figure 12a shows how a single Synchronous And Ele-
ment gets instantiated and simulated, using the functions
described in Table 1. In lines 2 and 3, we create two inputs
named A and B, producing four pulses on each. Line 4 creates
a periodic clock signal, while lines 6 and 7 create and start a
simulation object. Line 8 verifies the correctness of pulses
appearing on output Q; here, the first appears at 209.2 ps, ex-
actly firing_delay after the input pulse on CLK that ended

the first clock period in which both A and B appeared. Line 9
produces the graph in Figure 12b. Finally, Figure 13 shows
the PyLSE simulator catching a past constraints violation
(the setup time constraint). The first pulse produced on B
arrives too soon before the next pulse that arrives on CLK.

4.4 Correspondence with Timed Automata
Timed Automata (TA) are a related formalism with a rich
theoretical foundation, used extensively to model real-time
systems with timing constraints. A Timed Automaton [2] is
a finite state machine whose state transitions are guarded
by conditions on a set of resettable clocks, defined as follows:

Definition 4.1 (TimedAutomata). ATimedAutomaton𝐴 =

⟨𝐿, 𝑙0, Σ,𝐶, 𝐸, 𝐼 ⟩ is a tuple where (𝑙 ∈)𝐿 is a set of locations,
𝑙𝑖𝑛𝑖𝑡 ∈ 𝐿 is the initial location, (𝛼 ∈)Σ is the set of actions,
(𝑐 ∈)𝐶 is a set of clocks, 𝐼 : 𝐿 → Φ(𝐶) are clock invariants
at each location, and

(𝑒 ∈)𝐸 ⊆ 𝐿 × Σ × Φ(𝐶) × P(𝐶) × 𝐿
is the set of transitions. 𝑒 = ⟨𝑙, 𝛼, 𝜑, 𝜆, 𝑙 ′⟩ ∈ 𝐸 is a transition
from location 𝑙 to 𝑙 ′ on action 𝛼 , 𝜑 is the guard specifying
conditions that must be true on the clocks, and 𝜆 is the set
of clocks to be reset after the transition.

To directly obtain the benefits of TA, we convert a PyLSE
Machine to a network of Timed Automata running in par-
allel. Figure 14 graphically shows this conversion process
for a single edge of the Synchronous And Element. This is
the same edge highlighted in Figure 5, but here we have
replaced the state named a and b arrived with both be-
cause of space constraints. At a high level, this process works
by expanding the edges from the original PyLSE Machine
into TA transition sequences. We first create TA clocks for
each PyLSE Machine input — 𝑐A, 𝑐B, and 𝑐CLK — in addition
to a clock, 𝑐ℎ , that measures the time elapsed on transitions.
These clocks are available to all edges of this TA. Given edge
CLK0𝜏hold/{Q𝜏prop }/{*𝜏setup } emerging from state both, transla-
tion proceeds incrementally. The input symbol CLK of the
PyLSE Machine becomes a TA channel CLK on which mes-
sages are only received by this automaton. The time it takes
to complete the transition, 𝜏hold, becomes part of the inequal-
ity in both location q0’s invariant and in the guard involving
clock 𝑐ℎ as part of the final edge to idle. In addition, clocks

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

both idle
CLK0𝜏hold/{Q𝜏prop }/{*𝜏setup }

(a) Original PyLSE Machine transition, moving
from both to idle on CLK only if 𝜏hold time has
passed, producing output Q after 𝜏prop time. It is
an error if any inputs (i.e. *) arrived in the last
𝜏setup time units prior to starting this transition.
The priority 0 is ignored here in isolation.

both q0

{𝑐ℎ ≤ 𝜏hold}

idle

errA𝑠 errB𝑠 errCLK𝑠

CLK?;{∧𝛼 ∈{A,B,CLK} 𝑐𝛼 ≥ 𝜏setup};{𝑐ℎ, 𝑐CLK} 𝜎 ;∅;∅

CLK?;0 ≥ 𝑐A < 𝜏setup;∅ CLK?;0 ≥ 𝑐B < 𝜏setup;∅ CLK?;0 ≥ 𝑐CLK < 𝜏setup;∅

(b) (Intermediary step) Expanding the original transition into two intermediate
TA transitions that handle receiving a message on channel CLK (corresponding to
original symbol CLK) (left edge), checking for the transition time to have passed
(right edge), and erroring out (to errA𝑠 , errB𝑠 , or errCLK𝑠) if the 𝜏setup is violated.

both q0 q1

{𝑐ℎ ≤ 𝜏hold}

idle

errAℎ errBℎ errCLKℎ

... 𝑓 !;∅;∅ 𝜎 ;{𝑐ℎ = 𝜏hold};{𝑐ℎ}

A?;{0 ≥ 𝑐ℎ < 𝜏hold};∅ B?;{0 ≥ 𝑐ℎ < 𝜏hold};∅

CLK?; 0 ≥ 𝑐ℎ < 𝜏hold;∅

... ...
...

(c) (Final step, part 1) Further expanding the transition to include transitions for
firing output 𝑓 and erroring out (to errAℎ , errBℎ , or errCLKℎ) if unexpected inputs
are received during a transitionary period.

f0 f1

{𝑐𝑝 ≤ 𝜏prop}
𝑓 ?;∅;{𝑐𝑝 }

Q!;{𝑐𝑝 = 𝜏prop};∅

(d) (Final step, part 2) Auxiliary TA created for
modeling firing delay. The TA in Figure 14c sends
a message on channel 𝑓 , which is received here.
After 𝜏prop time units, output finally appears on
output channel Q. This firing TA, including a fresh
clock 𝑐𝑝 , is duplicated by a soaking factor 𝑠 =

⌈𝜏prop/𝜏hold⌉ to allow the network to fire again
if needed during the transition.

Figure 14. Expanding a PyLSE Machine transition into its corresponding TA transitions, using an edge from the Synchronous
And Element (for brevity, we’ve replaced the state named a and b arrived with both). We assume clocks 𝑐ℎ , 𝑐𝑠 , and 𝑐𝑝 and
channels A, B, CLK, 𝑓 and Q. Shaded states (or ... edges) indicate old states (edges) repeated from the previous figure.

𝑐A, 𝑐B, and 𝑐CLK are compared against the past constraint value,
𝜏setup, in the first edge’s guard. The TA goes to an error state
if these constraints are violated and otherwise transitions to
q0. Figure 14b is the result of this first conversion.
To detect inputs while in the transitional period, Figure

14c inserts three additional states – erra, errb and errclk
– to cover all possible input messages. Figure 14c also adds
the intermediate state q1, for sending a firing message 𝑓 to
an auxiliary TA created in Figure 14d and for setting up the
clock that is used for checking that the transitional timing
period has been satisfied before going to state idle. The
auxiliary TA in Figure 14d is created entirely alongside the
previous TA.When it receives a message 𝑓 to fire, it waits the
designated firing delay time 𝜏prop before sending a message
on channel Q. Here, producing output Q in the original PyLSE
Machine corresponds to sending a message on the channel
Q. This channel, created solely for sending, allows an output
action and transition to occur in parallel.

There is a significant increase in complexity as one moves
down from the PyLSEMachine to the TA. For example, Figure
14 shows that at least 12 TA locations and 11 edges must be
created to describe a single PyLSE Machine transition. The
entire resultant TA network for a single Synchronous And

Element PyLSE Machine has 102 locations and 110 edges.
PyLSE properly encapsulates this complexity, allowing this
much larger TA network to be represented by the four states
and twelve edges of the original PyLSE Machine of Figure 5.
Timed-arc Petri nets also offer a broad, descriptive for-

malism for concurrent systems. However, we discovered
that TA offer a better balance between expressivity and us-
ability. Specifically, computing reachability for unbounded
timed-arc Petri nets is undecidable, while for TA it is decid-
able in PSPACE [8]. Additionally, the complexity results for
other constructions such as bisimilarity are not any more
performant for Petri nets than TA, and TA are equivalent in
expressive power to bounded timed-arc Petri nets [10].

5 Evaluation
The goal of our evaluation is to prove the following claims:

Claim 1. PyLSE can be used to accurately model the func-
tional and timing behavior of basic SCE cells and larger designs.

Claim 2. PyLSE offers significant productivity gains over
state-of-art HDLs for designing and simulating basic SCE cells
and larger designs.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

Figure 15. A eight-input bitonic sorter, composed of twenty-
four comparators (see Figure 11a). It takes eight individual
input wires (i0 through i7), which are produced in arrival
time order, after some network delay, on o0 through o7.

Claim 3. PyLSE can be used in conjunction with a state-of-
the-art model checker to formally verify properties of basic
SCE cells and larger designs.

To evaluate these claims, we implemented 16 basic cells
(constituting the PyLSE standard library) plus six larger de-
signs as listed in Table 3. These constitute a representative
set of functions showing that PyLSE transition systems can
accurately capture the functional behavior of SCE cells using
pulse-based signaling and systems built out of such cells. For
example, we have used PyLSE to model both synchronous
RSFQ designs and asynchronous xSFQ and temporal SCE
designs. As far as we know, there are no open source cell
libraries available that contain all the basic cells we list in
Table 3, making direct comparisons difficult.

5.1 Circuit Simulation Comparison
Circuit designers perform simulations with low-level lan-
guages like SPICE [40] and WRSpice [58] to create analog
gate models using fundamental electrical components. How-
ever, this process can be time-consuming and requires signif-
icant domain expertise. The PyLSE abstraction complements
this process; the nominal timing values found through these
detailed circuit-level simulations inform the models of the
gates via their respective PyLSE Machines. It is through this
abstraction that PyLSE can improve productivity by making
it easier to scale and simulate larger designs before physically
implementing them.
However, in the analog domain, loading effects and addi-

tional buffering stages used to improve signal fidelity can
change these observed timing values when two or more
gates are connected together. These in turn cause small tim-
ing differences to be observed between PyLSE and circuit
simulations in the cases of larger designs. To compensate
for such variations, PyLSE allows you to express the timing
behavior of an SCE cell as a distribution.
Thus, a key to developing a successful simulator at a dif-

ferent level of abstraction is to verify that the two match

Table 2. Simulation times of PyLSE vs. schematic-level mod-
els. For the C and InvC elements, size refers to the number
of transitions in the DSL (≈ the number of lines), and for
the rest, the number of lines. The number of schematic lines
reported is the size of the unflattened netlist.

Name Schematic (Cadence) PyLSE
Lines Time (s) Size Time (s)

C 81 2.840 6 0.000298
InvC 87 2.987 6 0.000336

Min-Max Pair 140 4.608 5 0.000617
Bitonic Sort 8 250 52.565 24 0.003857

in spite of design size. In this section, we demonstrate this
for PyLSE by focusing on an 8-input bitonic sorter and the
cells that compose it. A bitonic sorter [5] is a parallel sort-
ing network made up of many min-max pair blocks (Figure
11), connected like in Figure 15. To validate the accuracy of
PyLSE, we compare the results generated by running the
four designs shown in Table 2 against circuit-level simula-
tions. For these circuit-level simulations, we use the Cadence
Virtuoso suite and a process design kit (PDK) corresponding
to the state-of-the-art MITLL SFQ5ee fabrication process.
Pulses are supplied through a Direct Current-to-SFQ con-
verter fed by a current source, while the pulses are probed
directly for voltage measurement.5

Figure 16 compares three design simulations in PyLSE and
a circuit schematic simulator6. Figures 16a (PyLSE) and 16d
(schematic) simulate the C Element. Given identical inputs
and the C cell’s propagation delay (12 ps), the output times
of both simulations match exactly. The PyLSE waveform of
the min-max pair is show in Figure 16b, and its circuit wave-
form in Figure 16e (SPICE). The circuit model’s propagation
delay along all paths is 22 ps, while the PyLSE model’s prop-
agation delay is 25 ps. The discrepancy comes because the
given PyLSE design was created as a pure composition of
the individual cells. When combined together at the circuit
schematic level, however, the entire system exhibits a smaller
total propagation delay than what would be assumed from
the sum of its parts, due to the parasitic and loading effects
mentioned previously. However, the delay of each individual
cell in PyLSE can be tuned, with optional variability added
(see Section 5.2), to match the circuit schematic behavior
more closely, if desired.
The PyLSE waveform of the 8-input bitonic sorter is dis-

played in Figure 16c and its circuit waveform in Figure 16f.
The composability issue creeps up here as well: the circuit
model’s entire propagation delay is between 100 and 110 ps,
while a purely compositional delay would equal the min-max
circuit model’s delay (22 ps) multiplied by the depth (6) of the

5In practice, the readout is enabled by SFQ-to-DC [36] converters because
direct wire probing is not feasible.
6The Inverted C Element waveforms have been omitted for space.

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(a) PyLSE simulation (C Element). (b) PyLSE simulation (min-max). (c) PyLSE simulation (8-input bitonic sort).

(d) Circuit simulation (C Element). (e) Circuit simulation (min-max). (f) Circuit simulation (8-input bitonic sort).

Figure 16. PyLSE vs circuit simulation results for the C Element, min-max pair and 8-input bitonic sorter.

network, i.e. 22 ∗ 6 = 132 ps. The PyLSE design, with a total
delay of 25 ∗ 6 = 150, nevertheless functions correctly. For
example, the pulse arriving on input IN4 (the earliest input
pulse) is produced 150 ps later on OUT0, and more generally,
the output pulses appear in rank order as expected. Table 2
compares sizes and simulation times of these designs. The
PyLSE versions are an average of 16.6× smaller than their
circuit schematic counterparts and take an average 9879×
less time to simulate. These example simulations demon-
strate an important trade-off: the extremely high accuracy
of the analog design level versus the scalability and rapid
prototyping of PyLSE.

5.2 Simulation and Dynamic Correctness Checks
In this subsection, we harness the rich features of Python
to quickly validate our designs for correctness. In particular,
we can use the events dictionary that PyLSE returns from a
simulation run (see Figure 12a) to assert various correctness
properties. Several examples follow; similar tests were per-
formed for all 22 designs shown in Table 3. More details are
found in our artifact and GitHub repository.

2x2 Join. The 2x2 Join element is a dual-rail logic prim-
itive that takes in two pairs of inputs that are logical com-
plements — in this case, A𝑇 and A𝐹 , and B𝑇 and B𝐹 — and
produces one of four outputs depending on which pair of
inputs have arrived. For its complete PyLSE specification,
12 transitions are needed. A requirement for this cell to
function correctly is to interleave a B𝑇 or B𝐹 pulse between

subsequent A𝑇 and A𝐹 pulses and vice versa. This can be
written succinctly as follows:
inputs = sorted(((w, p) for w, evs in events.items()
for p in evs if w in ('A_T', 'A_F', 'B_T', 'B_F')),
key=lambda x: x[1])

zipped = list(zip(inputs[0::2], inputs[1::2]))
assert all(x[0] != y[0] for x, y in zipped)

Race Tree. A race tree [51] is a decision tree that uses
the principles of race logic to return a winner label based
on a set of internal decision branches. We implement a race
tree in PyLSE by composing 18 basic SFQ cells together in a
total of 20 lines of code. A fundamental correctness property
of these trees is that they return only one output label for
each set of input pulses. The following assertion encodes
this condition using the events dictionary of before:
assert sum(len(l) for o, l in events.items()

if o in ('a', 'b', 'c', 'd')) == 1

8-input Bitonic Sorter. Abitonic sorter is correct if, given
a single pulse on each input at an arbitrary time (spaced far
enough apart to satisfy transition time constraints), the out-
puts appear in rank order. This property can be expressed
as follows, assuming the first output that should appear is
named O0, followed by O1, etc. until the last output O𝑁 for
some power-of-two 𝑁 :
out_events = {e for e in events.items()

if e[0].startswith('o')}
ordered_names = sorted(out_events.keys())
ranked = [es for _, es in sorted(out_events.items(),

key=lambda x: ordered_names.index(x[0]))]
assert all(len(es) == 1 for es in ranked)

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

assert all(x[0] <= y[0] for x, y
in zip(ranked, ranked[1:]))

Evaluating Robustness Given Timing Variability. In
the circuit world, propagation delays of these basic cells
vary from the expected values when chaining them together.
This is apparent in the bitonic sort example of Section 5.1,
where the circuit’s delay varied between 100 and 110 ps.
Such variance can lead to pulses arriving at their destination
cells too early or late, causing the design to fail unexpect-
edly. At a PyLSE Machine level, these failures are detected
by violations of transition and past constraint times during
simulation or by erroneous outputs seen after simulation,
and might signify that the network needs to be redesigned
to make it less sensitive to variability. PyLSE makes it easy
to add variability to existing designs and evaluate their ro-
bustness in the presence of these variations; simply pass
the flag variability=True to simulate(). Every individ-
ual propagation delay that occurs during the simulation will
then have a small amount of delay, by default taken from a
Gaussian distribution, added to or subtracted from it. The
variability argument can be used to specify the cell types
or the individual cell instances where the default variability
should be added, or it can be set to a user-defined function
for even greater fine-tuning.

5.3 Model Checking in UPPAAL
Model checking [12] is a formal verification technique used
to check that a particular property, typically written in a
temporal logic, holds for certain states on a given model
of a system. Before it can be used, however, a model of the
system must be created. Timed Automata is one such model,
and as we have shown in Section 4, PyLSE can automatically
transform PyLSEMachines into a network of communicating
Timed Automata; in this way, designs written in PyLSE are
the models themselves, and immediately amenable to formal
verification.

We have chosen to integrate with UPPAAL, a state-of-
the-art framework for modeling real-time systems based
on TA [7]. The conversion process is straightforward: the
PyLSE circuit is traversed, with every transition of every
element being converted according to the steps in Figure
14 into a network UPPAAL-flavored TA. The result is saved
to an XML file, which can then be simulated in UPPAAL or
verified against certain properties on the command line via
the verifyta program their distribution provides.

Query 1: Correctness. To verify that our translation pro-
cess works, we automatically converted all 16 basic cells and
six larger designs into UPPAAL, as shown in Table 3, where
we note the resulting size of the TA network. Once in UP-
PAAL, we checked that their internal simulator agrees with
ours from an input/output perspective. We also automati-
cally generate a correctness formula in UPPAAL-flavored
timed computation tree logic (TCTL) [6, 21] for each, based

on a given PyLSE simulation’s events, to formally verify that
the given design generates the expected output. For example,
here is a PyLSE-generated TCTL formula for the correctness
of min-max pair, given pulses on A at 115, 215, and 315, on B
at 64, 184, and 304, and a network delay of 25 ps:
A[] (((firingauto3.fta_end imply ((global == 890) ||

(global == 2090) || (global == 3290))) &&
(firingauto4.fta_end imply ((global == 890) ||
(global == 2090) || (global == 3290))) &&
(firingauto5.fta_end imply ((global == 890) ||
(global == 2090) || (global == 3290)))) &&
((firingauto12.fta_end imply ((global == 1400) ||
(global == 2400) || (global == 3400)))))

At the top of this formula, 𝐴 is a path quantifier that
expresses “for all subsequent time points”, while [] is a
branch quantifier meaning “for all possible branches.” The
firingauto* correspond to firing TA instances, and fta_end
is the location in that instance that immediately follows send-
ing a fire message to a particular network output sink. As
many firing TA may be associated with each network out-
put (see Figure 14d), there are multiple states to check for
each time. This says that it is only possible to produce a
pulse at the given output at the given time. These times
have been upscaled to integers to meet the requirements
UPPAAL places on numbers involved in clock constraints;
thus global == 2090 is 209.0 ps in PyLSE.
In Table 3, we also show the time it took to verify this

property (customized to each cell). For the basic cells and
the min-max pair, verification consistently took less than 1
second. The race tree, with 440 locations, took 127 seconds
and explored 262559 states, while the synchronous full adder,
with nearly 43% more locations, took 669 seconds (5.26×)
and visited 7.077× more states. Model checking becomes
infeasible due to the state explosion as we reach the bitonic
sorters and xSFQ [54] full adder, which failed to finish in a
day. Table 3 also shows how much larger the network of TA
is compared to the original PyLSE Machines. On average,
each cell (i.e. PyLSE Machine) requires 3.02 UPPAAL TA,
each PyLSE Machine state requires 18.99 UPPAAL locations,
and each PyLSE Machine transition requires 9.05 UPPAAL
transitions.

Query 2: Unreachable Error States. Our translation pro-
cess inserts error states that are entered when transition time
or past constraint violations occur (for example, errAℎ and
errA𝑠 , respectively, from Figure 14). Since these states have
no outgoing edges, they cannot respond to additional input
nor allow time to pass and so are terminal. Entering such a
state would deadlock the TA, and verifying that no deadlock
occurs (i.e. A[] not deadlock) would normally be sufficient
to show that the inputs to a design meet timing constraints.
Unfortunately, this form of deadlock detection is not useful
for our purposes, since “good” deadlock also occurs when
the sequence of user-defined inputs has been exhausted and
no more cells can progress. Instead, we automatically gen-
erate an UPPAAL verification query that checks that it is

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 3. Basic cells (first 16 rows) and larger designs (last six rows) implemented in PyLSE. Each has been validated via PyLSE
simulation for functional correctness and timing constraint violation detection, and automatically converted into TA that
have been simulated and verified in UPPAAL. The PyLSE columns display counts for size, cells, states, and transitions; for
basic cells, these are numbers for an individual cell, while for the larger designs, it is the accumulation of every instantiated
cell in the network. The size corresponds to the number of transitions written in the DSL (roughly equal to the number of
lines) for basic cells, and the number of lines for the larger designs. The first four UPPAAL columns are the number of TA,
locations, transitions, and channels in the cell’s generated TA network, while the latter two columns contain the time to verify
the Queries 1 and 2 listed in Section 5.3 and the number of total states explored (only one number is listed in each column if
the results for Queries 1 and 2 were the same). It took less than 1 second to simulate all of these designs in PyLSE.

Name PyLSE UPPAAL Comparison
Size Cells States Tran. TA Locs. Tran. Chan. Time (s) States TA/Cells Locs./States Tran.(U)/Tran.(P)

C 6 1 3 6 2 39 42 3 <1 38 2 13 7
InvC 6 1 3 6 4 45 48 3 <1 69 4 15 8
M 2 1 1 2 2 17 18 3 <1 37 2 17 9
S 1 1 1 1 3 13 13 3 <1 56 3 13 13
JTL 1 1 1 1 2 9 9 2 <1 17 2 9 9
And 11 1 4 12 5 102 110 4 <1 69 5 25.5 9.17
Or 4 1 2 6 2 49 53 4 <1 48 5 24.5 8.83

Nand 12 1 4 12 2 95 103 4 <1 42 2 23.75 8.58
Nor 6 1 2 6 2 49 53 4 <1 36 2 24.5 8.83
Xor 9 1 3 9 3 75 81 4 <1 45 3 25 9
Xnor 12 1 4 12 2 94 102 4 <1 45 2 23.5 8.5
Inv 4 1 2 4 3 30 32 3 <1 14 3 15 8
DRO 4 1 2 4 2 27 29 3 <1 11 2 13.5 7.25

DRO SR 6 1 2 6 2 49 53 4 <1 23 2 24.5 8.83
DRO C 4 1 2 4 3 31 33 4 <1 14 3 15.5 8.25
2x2 Join 20 1 5 20 5 206 221 8 <1 58 5 41.2 11.05
Min-Max 5 5 9 15 24 149 155 14 <1 2471 4.8 16.56 10.33
Race Tree 16 18 32 56 50 440 464 54 127/84 262559 2.78 13.75 8.29

Adder (Sync) 13 19 33 71 57 627 665 62 669/515 1858153 3 19 9.37
Adder (xSFQ) 31 83 121 183 193 1449 1511 211 ∞ N/A 2.33 11.98 8.26
Bitonic Sort 4 6 30 54 90 144 894 930 84 ∞ N/A 4.8 16.56 10.33
Bitonic Sort 8 24 120 216 360 576 3576 3720 336 ∞ N/A 4.8 16.56 10.33

impossible to reach any error state in the network (here, for
the min-max pair):
A[] not (c0.C_err_a_1 || c0.C_err_a_11 || c0.C_err_a_16 ||

...18 more lines...
c_inv0.C_INV_err_b_8 || c_inv0.C_INV_err_b_9 ||
s0.S_err_a_1 || s0.S_err_a_2 || jtl0.JTL_err_a_1 ||
jtl0.JTL_err_a_2 || s1.S_err_a_1 || s1.S_err_a_2)

UPPAAL explores the same number of states as for Query 1
in under one second for all basic cells, with the larger designs
similarly encountering exponential blowup difficulties. If the
above property is not satisfied, UPPAAL will return a trace
showing the path that led to the particular error state.

As of this writing, additional properties must be explicitly
written out in UPPAAL’s DSL for expressing TCTL formulas.
As far as we know, we are the first to use timed automata-
based model checking to check the correctness of SFQ circuits.

6 Related Work
Existing HDLs. Existing HDLs, like Verilog [56], model

SCE timing constraints by coupling asynchronously-updated
registers with complicated series of conditionals to track
whether these constraints are satisfied [1, 28, 33, 60]. Designs
using this approach have many downsides:

• They tend to be extremely verbose, spanning tens to
hundreds of lines per cell module. For example, in [18],
90 lines of codes were needed to model a destructive
readout (DRO) cell, while the PyLSE Machine equiva-
lent takes four lines. Similarly, a model of the OR cell
in [37] takes 18 lines of Verilog, with an autogenerated
model taking 58 lines of Verilog in [44].
• Anumber of ambiguous internal signals must be gener-
ated for synchronization purposes. For example, for the
implementation of said DRO cell, five edge-triggered
always blocks and three artificial synchronization sig-
nals were required.
• There are no clear boundaries between functional and
timing specification, leading to obfuscated code and
an enlarged surface for programming bugs.
• They rely on the peculiar semantics of Verilog or the
chosen simulator, instead of being based on a suitable
formal foundation.

Recent approaches [49, 50] are more modular and compact,
but the resemblance of their proposed coding scheme to

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

multithreaded socket programming raises the barrier to en-
try and again makes them prone to bugs. Finally, other ap-
proaches [17, 38, 39, 44] automatically extract state machine
models and timing characteristics of SFQ cells from SPICE
files, but in the end, still use them to generate Verilog HDL
code that must be integrated with the rest of the user-coded
design. PyLSE can serve as a more compact and easier-to-
comprehend way to analyze such models, but more impor-
tantly it has well-defined methods by which such state mod-
els compose into larger circuits – something not found in
any of that work. Besides this, PyLSE allows for the easy
modeling of proprietary or experimental SCE cells, where
only their Mealy machine description is publicly available
(and not their schematic implementation).

Existing Simulators and Logic Synthesis Tools. SFQ
cell functionality is commonly verified through analog sim-
ulators catered to the unique physics of superconducting
devices [15, 16, 48, 57]. Other tools such as PSCAN and
PSCAN2 perform similar timing analyses, and are geared
towards optimizing circuit-level parameters based on device
switching events internal to the cells [42, 43, 46]. By lifting
the focus to a higher level of abstraction in PyLSE, an im-
plementation gap emerges between these simulators and
PyLSE machines. While there are no theoretical limitations
that prohibit the translation of PyLSE machines to schematic
models, we consider such hardware synthesis to be a sepa-
rate problem outside the scope of this paper. We foresee the
integration of PyLSE with SCE-oriented EDA tools, such as
IARPA’s SuperTools, upon their public release.

Functional andDataflowLanguages. There have been
efforts in the past to describe traditional hardware using
dataflow programming languages. The language Lustre, a
modeling framework for reactive, real-time systems, has
been used for deriving an automaton from code and sub-
sequently model checking it for safety properties[20]. The
language Esterel has similarly been used to describe hard-
ware that is then translated into equation systems inside the
theorem prover HOL, motivating the possibility of formal
analysis of circuit correctness as well as circuit synthesis [45].
PyLSE differs in a few respects. While dataflow languages
describe hardware as a set of recursive equations, PyLSE
offers a straightforward way to describe arbitrary SCE cells
as transition systems, which matches the intuitions of the
SCE community. Further, work using dataflow languages has
focused on synchronous programs which orchestrate events
and data flow according to one or more clocks. Meanwhile,
PyLSE makes no requirements on synchrony, allowing the
designer to more easily describe circuits with or without
clocks.

Verification. There have been many attempts to formally
check the correctness of SCE designs at the HDL level. Re-
cent work [29] uses a delay-based time frame model, which

assumes that pulses arrive periodically according to a unique
clock period. This assumption allows them to discretize the
behavior of these pulse-based systems into a verifiable syn-
chronous model. PyLSE instead imposes no requirements
about clock periodicity and therefore is also able to model
systems that include asynchronous cells. VeriSFQ [59] is a
semi-formal verification framework that uses UVM [55] to
validate that designs are properly path-balanced, have cor-
rect fanout, and that all synchronous gates receive a clock
signal. In comparison, PyLSE is an entirely new DSL for SCE
design, statically preventing the creation of designs with
these basic issues, and so a formal framework for checking
them is unneeded. Finally, qMC [37] relies on SMT-based
model checkers to verify the correct functionality of post-
synthesis netlists via SystemVerilog assertions. However,
their gate models do not include information on hold or
setup times or propagation delay, such that outputs take a
single time unit to go high. PyLSE instead represents and
model checks against these timing constraints via a Timed
Automata-based model checker like UPPAAL.

7 Conclusion
In this paper, we presented PyLSE, a language for the design
and simulation of pulse-based systems like superconductor
electronics (SCE). PyLSE simplifies the process of precisely
defining the functional and timing behavior of SCE cells
using a new transition-system based abstraction, which we
call the PyLSE Machine. It facilitates a multi-level design ap-
proach by allowing the construction of scalable SCE systems
through the mix of basic transition-based cells and higher-
level abstract design models. We evaluate PyLSE by simulat-
ing and dynamically checking the correctness of 22 different
designs, comparing these simulations against analog SPICE
models, and verifying their timing constraints using the UP-
PAAL model checker. Compared to analog circuit designs,
PyLSE designs take 16.6× fewer lines code and take several
orders of magnitude less time to simulate, all while main-
taining the needed level of timing accuracy. Compared with
specifications directly made using Timed Automata, PyLSE
requires 18.9× fewer states and 9.0× fewer transitions. We
believe, with the end of traditional transistor scaling, pulse-
based logic systems will only continue to grow in importance.
PyLSE, with its expressive timing, composable abstractions,
and connection to well-understood theory, has the potential
to provide a new foundation for that growth for years to
come.

Acknowledgments
We thank our shepherd, Sara Achour, and the anonymous
reviewers for their excellent suggestions on improving the
paper. This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1763699, 2006542,
and 1717779.

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] V. Adler, Chin-Hong Cheah, K. Gaj, D. K. Brock, and E. G. Friedman.

1997. A Cadence-based design environment for single flux quantum
circuits. IEEE Transactions on Applied Superconductivity 7, 2 (1997),
3294–3297. https://doi.org/10.1109/77.622058

[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata.
Theoretical Computer Science 126, 2 (April 1994), 183–235. https:
//doi.org/10.1016/0304-3975(94)90010-8

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: Constructing Hardware in a Scala Embedded Language.
In Proceedings of the 49th Annual Design Automation Conference (San
Francisco, California) (DAC ’12). Association for Computing Machin-
ery, New York, NY, USA, 1216–1225. https://doi.org/10.1145/2228360.
2228584

[4] R. S. Bakolo. 2011. Design and implementation of a RSFQ supercon-
ductive digital electronics cell library. Master’s thesis. University of
Stellenbosch.

[5] K. E. Batcher. 1968. Sorting Networks and Their Applications. In
Proceedings of the April 30–May 2, 1968, Spring Joint Computer Con-
ference (Atlantic City, New Jersey) (AFIPS ’68 (Spring)). Association
for Computing Machinery, New York, NY, USA, 307–314. https:
//doi.org/10.1145/1468075.1468121

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. 2004. A Tutorial
on Uppaal. In Formal Methods for the Design of Real-Time Systems:
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, Bertinora, Italy, September 13-
18, 2004, Revised Lectures, Marco Bernardo and Flavio Corradini (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 200–236. https://doi.
org/10.1007/978-3-540-30080-9_7

[7] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. 1996. UPPAAL — a tool suite for automatic verification
of real-time systems. In Hybrid Systems III, Rajeev Alur, Thomas A.
Henzinger, and Eduardo D. Sontag (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 232–243.

[8] Béatrice Berard, Franck Cassez, Serge Haddad, Didier Lime, and
Olivier Henri Roux. 2005. Comparison of the Expressiveness of Timed
Automata and Time Petri Nets. In FORMATS 2005 - 3rd International
Conference on Formal Modeling and Analysis of Timed Systems (Lec-
ture Notes in Computer Science, Vol. 3829). Springer-Verlag, Uppsala,
Sweden, 211–225. https://doi.org/10.1007/11603009_17

[9] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: Hardware Design in Haskell. In Proceedings of the Third ACM SIG-
PLAN International Conference on Functional Programming (Baltimore,
Maryland, USA) (ICFP ’98). Association for Computing Machinery,
New York, NY, USA, 174–184. https://doi.org/10.1145/289423.289440

[10] Joakim Byg, Kenneth Yrke Jørgensen, and Jiří Srba. 2009. An Efficient
Translation of Timed-Arc Petri Nets to Networks of Timed Automata.
In Formal Methods and Software Engineering, Karin Breitman and Ana
Cavalcanti (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 698–
716.

[11] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian,
Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A
Stochastic-Computing Based Deep Learning Framework Using Adia-
batic Quantum-Flux-Parametron Superconducting Technology. In Pro-
ceedings of the 46th International Symposium on Computer Architecture
(Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery,
New York, NY, USA, 567–578. https://doi.org/10.1145/3307650.3322270

[12] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis
of synchronization skeletons using branching time temporal logic. In
Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 52–71.

[13] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo,
Joseph McMahan, and Timothy Sherwood. 2017. A pythonic approach

for rapid hardware prototyping and instrumentation. In 2017 27th
International Conference on Field Programmable Logic and Applications
(FPL). IEEE, Ghent, Belgium, 1–7. https://doi.org/10.23919/FPL.2017.
8056860

[14] Leon N. Cooper. 1956. Bound Electron Pairs in a Degenerate Fermi
Gas. Physical Review 104, 4 (Nov. 1956), 1189–1190. https://doi.org/
10.1103/PhysRev.104.1189

[15] J. A. Delport, K. Jackman, P. l. Roux, and C. J. Fourie. 2019.
JoSIM—Superconductor SPICE Simulator. IEEE Transactions on Applied
Superconductivity 29, 5 (2019), 1–5. https://doi.org/10.1109/TASC.2019.
2897312

[16] E. S. Fang and T. Van Duzer. 1989. A Josephson integrated circuit
simulator (JSIM) for superconductive electronics application. In Ex-
tended Abstracts of 1989 Intl. Superconductivity Electronics Conf. (ISEC
’89) (Tokyo, Japan). 407–410.

[17] Coenrad J. Fourie. 2018. Extraction of DC-Biased SFQ Circuit Verilog
Models. IEEE Transactions on Applied Superconductivity 28, 6 (2018),
1–11. https://doi.org/10.1109/TASC.2018.2829776

[18] Kris Gaj, Chin-Hong Cheah, E.G. Friedman, and M.J. Feldman. 1997.
Functional modeling of RSFQ circuits using Verilog HDL. IEEE Trans-
actions on Applied Superconductivity 7, 2 (1997), 3151–3154. https:
//doi.org/10.1109/77.622000

[19] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of Multi-
Gigahertz Rapid Single Flux Quantum Digital Circuits. In High Perfor-
mance Clock Distribution Networks, Eby G. Friedman (Ed.). Springer US,
Boston, MA, 135–164. https://doi.org/10.1007/978-1-4684-8440-3_11

[20] Nicolas Halbwachs, Daniel Pilaud, Farid Ouabdesselam, and Anne-
Cecile Glory. 1989. Specifying, programming and verifying real-time
systems using a synchronous declarative language. In International
Conference on Computer Aided Verification. Springer, 213–231.

[21] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. 1992. Symbolic
model checking for real-time systems. In [1992] Proceedings of the
Seventh Annual IEEE Symposium on Logic in Computer Science. IEEE,
Santa Cruz, CA, USA, 394–406. https://doi.org/10.1109/LICS.1992.
185551

[22] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan
Ding, Massoud Pedram, and Frederic T. Chong. 2020. NISQ+: Boosting
quantum computing power by approximating quantum error correc-
tion. In 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA). 556–569. https://doi.org/10.1109/ISCA45697.
2020.00053

[23] D. Scott Holmes, Alan M. Kadin, and Mark W. Johnson. 2015. Super-
conducting Computing in Large-Scale Hybrid Systems. Computer 48,
12 (2015), 34–42. https://doi.org/10.1109/MC.2015.375

[24] D. Scott Holmes, Andrew L. Ripple, and Marc A. Manheimer. 2013.
Energy-Efficient Superconducting Computing—Power Budgets and
Requirements. IEEE Transactions on Applied Superconductivity 23, 3
(2013), 1701610–1701610. https://doi.org/10.1109/TASC.2013.2244634

[25] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Intro-
duction to automata theory, languages, and computation. Acm Sigact
News 32, 1 (2001), 60–65.

[26] K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami, T.
Tanimoto, T. Ono, J. Kim, and K. Inoue. 2020. SuperNPU: An Extremely
Fast Neural Processing Unit Using Superconducting Logic Devices. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 58–72. https://doi.org/10.1109/MICRO50266.2020.00018

[27] B.D. Josephson. 1962. Possible new effects in superconductive tun-
nelling. Physics Letters 1, 7 (1962), 251–253. https://doi.org/10.1016/
0031-9163(62)91369-0

[28] Naveen Katam, Soheil Nazar Shahsavani, Ting-Ru Lin, Ghasem
Pasandi, Alireza Shafaei, and Massoud Pedram. 2017. SPORT Lab
SFQ Logic Circuit Benchmark Suite. https://ceng.usc.edu/techreports/
2017/Pedram%20CENG-2017-1.pdf. Accessed: 2021-10-22.

https://doi.org/10.1109/77.622058
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/11603009_17
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/3307650.3322270
https://doi.org/10.23919/FPL.2017.8056860
https://doi.org/10.23919/FPL.2017.8056860
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1109/TASC.2019.2897312
https://doi.org/10.1109/TASC.2019.2897312
https://doi.org/10.1109/TASC.2018.2829776
https://doi.org/10.1109/77.622000
https://doi.org/10.1109/77.622000
https://doi.org/10.1007/978-1-4684-8440-3_11
https://doi.org/10.1109/LICS.1992.185551
https://doi.org/10.1109/LICS.1992.185551
https://doi.org/10.1109/ISCA45697.2020.00053
https://doi.org/10.1109/ISCA45697.2020.00053
https://doi.org/10.1109/MC.2015.375
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://ceng.usc.edu/techreports/2017/Pedram%20CENG-2017-1.pdf
https://ceng.usc.edu/techreports/2017/Pedram%20CENG-2017-1.pdf

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

[29] T. Kawaguchi, K. Takagi, and N. Takagi. 2015. A Verification Method
for Single-Flux-Quantum Circuits Using Delay-Based Time Frame
Model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A
(2015), 2556–2564.

[30] A. Krasniewski. 1993. Logic simulation of RSFQ circuits. IEEE
Transactions on Applied Superconductivity 3, 1 (1993), 33–38. https:
//doi.org/10.1109/77.233410

[31] K.K. Likharev and V.K. Semenov. 1991. RSFQ logic/memory family: a
new Josephson-junction technology for sub-terahertz-clock-frequency
digital systems. IEEE Transactions on Applied Superconductivity 1, 1
(1991), 3–28. https://doi.org/10.1109/77.80745

[32] Norm Matloff. 2008. Introduction to discrete-event simulation and the
simpy language. Davis, CA. Dept of Computer Science. University of
California at Davis. Retrieved on August 2, 2009 (2008), 1–33.

[33] F. Matsuzaki, N. Yoshikawa, M. Tanaka, A. Fujimaki, and Y. Takai.
2003. A behavioral-level HDL description of SFQ logic circuits for
quantitative performance analysis of large-scale SFQ digital systems.
Physica C: Superconductivity 392-396 (2003), 1495 – 1500. https:
//doi.org/10.1016/S0921-4534(03)00775-5 Proceedings of the 15th In-
ternational Symposium on Superconductivity (ISS 2002): Advances in
Superconductivity XV. Part II.

[34] RMcDermott, MGVavilov, B L T Plourde, F KWilhelm, P J Liebermann,
OAMukhanov, and TAOhki. 2018. Quantum–classical interface based
on single flux quantum digital logic. Quantum Science and Technology
3, 2 (jan 2018), 024004. https://doi.org/10.1088/2058-9565/aaa3a0

[35] George H. Mealy. 1955. A Method for Synthesizing Sequential Circuits.
The Bell System Technical Journal 34, 5 (Sept. 1955), 1045–1079. https:
//doi.org/10.1002/j.1538-7305.1955.tb03788.x

[36] O.A. Mukhanov, S.V. Rylov, D.V. Gaidarenko, N.B. Dubash, and V.V.
Borzenets. 1997. Josephson output interfaces for RSFQ circuits. IEEE
Transactions on Applied Superconductivity 7, 2 (1997), 2826–2831. https:
//doi.org/10.1109/77.621825

[37] Mustafa Munir, Aswin Gopikanna, Arash Fayyazi, Massoud Pedram,
and Shahin Nazarian. 2021. QMC: A Formal Model Checking Verifica-
tion Framework For Superconducting Logic. In Proceedings of the 2021
on Great Lakes Symposium on VLSI (Virtual Event, USA) (GLSVLSI ’21).
Association for Computing Machinery, New York, NY, USA, 259–264.
https://doi.org/10.1145/3453688.3461522

[38] Louis C. Müller and Coenrad J. Fourie. 2014. Automated State Ma-
chine and Timing Characteristic Extraction for RSFQ Circuits. IEEE
Transactions on Applied Superconductivity 24, 1 (2014), 3–12. https:
//doi.org/10.1109/TASC.2013.2284834

[39] L. C. Müller and C. J. Fourie. 2014. Automated State Machine and
Timing Characteristic Extraction for RSFQ Circuits. IEEE Transactions
on Applied Superconductivity 24, 1 (2014), 3–12. https://doi.org/10.
1109/TASC.2013.2284834

[40] Laurence W. Nagel. 1975. SPICE2: A Computer Program to Simulate
Semiconductor Circuits. Ph. D. Dissertation. EECS Department, Uni-
versity of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/
TechRpts/1975/9602.html

[41] Travis E. Oliphant. 2007. Python for Scientific Computing. Computing
in Science Engineering 9, 3 (2007), 10–20. https://doi.org/10.1109/MCSE.
2007.58

[42] S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A.
Rylyakov. 1997. PSCAN’96: new software for simulation and optimiza-
tion of complex RSFQ circuits. IEEE Transactions on Applied Supercon-
ductivity 7, 2 (1997), 2685–2689. https://doi.org/10.1109/77.621792

[43] S V Polonsky, V K Semenov, and P N Shevchenko. 1991. PSCAN:
Personal Superconductor Circuit Analyser. Superconductor Science and
Technology 4, 11 (Nov. 1991), 667–670. https://doi.org/10.1088/0953-
2048/4/11/031

[44] Lieze Schindler. 2021. The Development and Characterisation of a Pa-
rameterised RSFQ Cell Library for Layout Synthesis. Ph. D. Dissertation.
Stellenbosch University.

[45] Klaus Schneider. 2001. A Verified Hardware Synthesis of Esterel Pro-
grams. Springer US, Boston, MA, 205–214. https://doi.org/10.1007/978-
0-387-35409-5_20

[46] Pavel Shevchenko. [n. d.]. PSCAN2. http://pscan2sim.org/. Accessed:
2021-10-22.

[47] Igor I Soloviev, Nikolay V Klenov, Sergey V Bakurskiy, Mikhail Yu
Kupriyanov, Alexander L Gudkov, and Anatoli S Sidorenko. 2017. Be-
yond Moore’s technologies: operation principles of a superconductor
alternative. Beilstein journal of nanotechnology 8, 1 (2017), 2689–2710.

[48] I Synopsis. 2009. HSPICE: The gold standard for circuit simulation.
[49] Ramy N. Tadros, Arash Fayyazi, Massoud Pedram, and Peter A.

Beerel. 2020. SystemVerilog Modeling of SFQ and AQFP Circuits.
IEEE Transactions on Applied Superconductivity 30, 2 (2020), 1–13.
https://doi.org/10.1109/TASC.2019.2957196

[50] R. N. Tadros, A. Fayyazi, M. Pedram, and P. A. Beerel. 2020. SystemVer-
ilog Modeling of SFQ and AQFP Circuits. IEEE Transactions on Applied
Superconductivity 30, 2 (2020), 1–13. https://doi.org/10.1109/TASC.
2019.2957196

[51] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri
Strukov, and Timothy Sherwood. 2019. Boosted Race Trees for Low
Energy Classification. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 215–228. https://doi.org/
10.1145/3297858.3304036

[52] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George
Michelogiannakis, Advait Madhavan, Jennifer Volk, John Shalf, and
Timothy Sherwood. 2020. A Computational Temporal Logic for Su-
perconducting Accelerators. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 435–448.
https://doi.org/10.1145/3373376.3378517

[53] Georgios Tzimpragos, Jennifer Volk, Dilip Vasudevan, Nestan
Tsiskaridze, George Michelogiannakis, Advait Madhavan, John Shalf,
and Timothy Sherwood. 2021. Temporal Computing With Supercon-
ductors. IEEE Micro 41, 3 (2021), 71–79. https://doi.org/10.1109/MM.
2021.3066377

[54] Georgios Tzimpragos, Jennifer Volk, Alex Wynn, James E. Smith, and
Timothy Sherwood. 2021. Superconducting Computing with Alter-
nating Logic Elements. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, Valencia, Spain,
651–664. https://doi.org/10.1109/ISCA52012.2021.00057

[55] 2020. IEEE Standard for Universal Verification Methodology Language
Reference Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-
2017) (2020), 1–458. https://doi.org/10.1109/IEEESTD.2020.9195920

[56] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE
Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), 1–590. https:
//doi.org/10.1109/IEEESTD.2006.99495

[57] S. R. Whiteley. 1991. Josephson junctions in SPICE3. IEEE Transactions
onMagnetics 27, 2 (1991), 2902–2905. https://doi.org/10.1109/20.133816

[58] Inc. Whiteley Research. [n. d.]. WRspice. http://wrcad.com. Accessed:
2021-10-22.

[59] A. D. Wong, K. Su, H. Sun, A. Fayyazi, M. Pedram, and S. Nazarian.
2019. VeriSFQ: A Semi-formal Verification Framework and Benchmark
for Single Flux Quantum Technology. In 20th International Symposium
on Quality Electronic Design (ISQED). IEEE, Santa Clara, CA, USA,
224–230. https://doi.org/10.1109/ISQED.2019.8697701

[60] Q. Xu, C. L. Ayala, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. 2016.
HDL-Based Modeling Approach for Digital Simulation of Adiabatic
Quantum Flux Parametron Logic. IEEE Transactions on Applied Su-
perconductivity 26, 8 (2016), 1–5. https://doi.org/10.1109/TASC.2016.
2615123

https://doi.org/10.1109/77.233410
https://doi.org/10.1109/77.233410
https://doi.org/10.1109/77.80745
https://doi.org/10.1016/S0921-4534(03)00775-5
https://doi.org/10.1016/S0921-4534(03)00775-5
https://doi.org/10.1088/2058-9565/aaa3a0
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1109/77.621825
https://doi.org/10.1109/77.621825
https://doi.org/10.1145/3453688.3461522
https://doi.org/10.1109/TASC.2013.2284834
https://doi.org/10.1109/TASC.2013.2284834
https://doi.org/10.1109/TASC.2013.2284834
https://doi.org/10.1109/TASC.2013.2284834
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/77.621792
https://doi.org/10.1088/0953-2048/4/11/031
https://doi.org/10.1088/0953-2048/4/11/031
https://doi.org/10.1007/978-0-387-35409-5_20
https://doi.org/10.1007/978-0-387-35409-5_20
http://pscan2sim.org/
https://doi.org/10.1109/TASC.2019.2957196
https://doi.org/10.1109/TASC.2019.2957196
https://doi.org/10.1109/TASC.2019.2957196
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3373376.3378517
https://doi.org/10.1109/MM.2021.3066377
https://doi.org/10.1109/MM.2021.3066377
https://doi.org/10.1109/ISCA52012.2021.00057
https://doi.org/10.1109/IEEESTD.2020.9195920
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/20.133816
http://wrcad.com
https://doi.org/10.1109/ISQED.2019.8697701
https://doi.org/10.1109/TASC.2016.2615123
https://doi.org/10.1109/TASC.2016.2615123

	Abstract
	1 Introduction
	2 Defining Computation on Pulses
	2.1 Functional Behavior
	2.2 Timing Behavior

	3 Overview of the PyLSE Machine
	3.1 Formalization of the PyLSE Machine
	3.2 Formalizing a Network of PyLSE Machines

	4 PyLSE Language Design
	4.1 Design Levels
	4.2 Syntactic and Semantic Checks
	4.3 Simulation
	4.4 Correspondence with Timed Automata

	5 Evaluation
	5.1 Circuit Simulation Comparison
	5.2 Simulation and Dynamic Correctness Checks
	5.3 Model Checking in UPPAAL

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

