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Abstract

Programming Language Techniques for Improving ISA and HDL Design

by

Michael Alexandre Christensen

Despite all the effort spent in testing, analyzing, and formally verifying software,

a program is ultimately only as correct as the underlying hardware on which it runs.

As processors become more performant, their microarchitectures become increasingly

complex; this complexity often manifests in instruction set architectures (ISAs) that

are bloated, imprecise, and therefore unamenable to formal verification. The ISA itself

is realized as a hardware implementation written in a hardware description language

(HDL). Unfortunately, modern HDLs lack the expressive, composable programming

abstractions we’ve come to expect of traditional high-level programming languages,

hampering innovation and correct-by-construction hardware design. Furthermore, the

unique characteristics of emerging technologies like superconductor electronics (SCE)

require us to rethink the HDLs we use and retool the entire design, simulation, and

verification stack.

This thesis shows how various programming language techniques, applied to the

realm of computer architecture and hardware design, help address these issues. I show

that abstraction, formal semantics, and type theory can be used to create an ISA that

is precise, concise, and amenable to formal reasoning by both human and machine.

I also show how HDLs can better support composability via formalized notions of

intermodular communication and dependency. Finally, I show that we can improve

SCE behavioral modeling and system design using a new automata-based pulse-transfer

level language.
ix
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Chapter 1

Introduction

Our programs are only as correct as the machines on which they run. This correctness

is often taken for granted, with the software realm siloed off from the hardware realm

and often oblivious to the intricacies of the processor running the code. However, if we

are to truly tackle the spectre of full-stack program verification, we must adequately

include our hardware in the discussion. In this thesis, I argue that to do so, we must

change how we approach hardware design both above and below the microarchitecture as

well for emerging technologies beyond CMOS.

Above the Microarchitecture The separation of concerns between hardware and

software has given the hardware realm the freedom to focus on creating machines that

meet particular power, efficiency, area, and security targets, all while interacting with

software via the same interface. This interface, the instruction set architecture (ISA),

serves as both an abstraction and a contract by presenting a set of assembly instructions

and a specification (often in thousands of pages of plain prose and pseudocode) of

how each instruction affects machine behavior. As processors have become increasingly

performant, their microarchitectures have become increasingly large and complex;

1



Introduction Chapter 1

unfortunately, this complexity has permeated the ISA abstraction boundary, manifesting

as ISAs that are buggy, imprecise, ill-defined, and hard to reason about, model, and

simulate.

Below the Microarchitecture ISAs are in turn implemented as processor microar-

chitectures using a hardware description language (HDL); these processors are just

one example of intellectual property (IP) blocks—reusable hardware components, pack-

aged into IP catalogs, that are then connected together. Systems on chip (SOCs) and

manycore processors integrate hundreds of these components, and as design teams

become larger and more remote, it becomes more important that these IPs, especially

proprietary IPs, have detailed and precise interface specifications. Naively connecting

hardware blocks together leads to bugs which are difficult to diagnose when looking at

the interfaces alone and which are especially difficult to debug after synthesis. Thus,

composability of IP becomes a major issue, andmodern HDLs lack effective abstractions

for dealing with this intermodular composability and communication beyond simple

abstractions like the “module” associating “input” and “output” wires with each other

via gates. Modern high-level programming languages, on the other hand, have many

mechanisms supporting effective modularity, abstraction, and dependency specifica-

tion, and we can use these techniques to be more precise about the surprisingly complex

requirements imposed on the use of data and what compositions lead to well-defined

digital designs.

And Beyond As we enter a post-Moore, post-Dennard scaling era in search of addi-

tional power, speed, and efficiency, we must to look beyond CMOS toward emerging

technologies like superconductor electronics (SCE). The unique characteristics of SCE,

such as its pulse-based information encoding and stateful gate primitives, require im-

2
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proved language abstractions and that we rethink the entire design, simulation, and

verification stack. Programming language theory again provides us insight into how

we can use better mathematical foundations, such as automata theory, for improved

SCE languages and simulation frameworks.

We need to ensure the correctness of the entire stack, from source code to silicon1

die, and this thesis seeks to show that the precision of programming language theory

can be effectively applied on the hardware side. This brings me to my thesis statement:

1.1 Thesis Statement

The application of programming language principles like abstraction and formal

semantics can make it easier to write verifiably correct and secure hardware, tangibly

improving both the interface which software uses to communicate with the machine

(the instruction set architecture) and the means by which we design the machine

itself (the hardware description language).

1.2 Organization of This Document

This thesis is structured as follows:

Chapter 2 This chapter discusses Zarf, an ISA resembling the untyped lambda cal-

culus designed to bring the assembly closer to frameworks used for formal program

analysis and reasoning, and which has been implemented as an FPGA prototype run-

ning an embedded medical application. I show that the architecture allows for the

formal verification of multiple properties of the end-to-end system, including a proof
1Niobium for SCE.

3
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of correctness of the assembly-level implementation of the core algorithm, the integrity

of trusted data via a non-interference proof, and a guarantee that our prototype meets

critical timing requirements. It is based on work published in ASPLOS 2017 (Cita-

tion: [1]; DOI: 10.1145/3037697.3037733; © 2017 ACM), IEEE Micro Top Pick 2018

(Citation: [2]; DOI: 10.1109/MM.2018.032271067; © 2018 IEEE), and the Journal of

Theoretical Computer Science 2021 (Citation: [3]; DOI: 10.1016/j.tcs.2020.09.039;

© 2021 Elsevier) and which appeared as a portion of the PhD thesis of Joseph McMahan

[4], co-author on the aforementioned publications. It is based on work supported by

the National Science Foundation under Grant No. 1239567, 1162187, and 1563935.

Chapter 3 This chapter discussesBouncer, which extends Zarf with let-polymorphism

tomake it easier to correctlywrite and reason about Zarf binaries. Using special-purpose

hardware, I show that we can use static analysis to prevent all program binaries with

memory errors, invalid control flow, and other undesirable properties from ever being

loaded onto the embedded program store. We can check this in a streaming and

verifiably non-bypassable way, directly in hardware, resulting in a system that is small,

efficient, and which guarantees freedom from many security and safety concerns. It is

based on work published in ISCA 2019 (Citation: [5]; DOI: 10.1145/3307650.3322256;

© 2019 ACM) and which also appeared as a portion of the aforementioned thesis by

Joseph McMahan. It is based on work supported by the National Science Foundation

under Grants No. 1740352, 1730309, 1717779, 1563935, 1350690, and a gift from Cisco

Systems.

Chapter 4 This chapter discussesWire Sorts, an abstraction thatmakes it impossible to

create certain classes of erroneous digital design and makes it easier to express interface

requirements and compose IP. Using a taxonomy of sorts to soundly abstract even

4



Introduction Chapter 1

complex combinational dependencies of arbitrary hardware modules, I show that we

can facilitate modularity in digital design by escalating problematic aspects of module

input/output interaction to the language-level interface specification. I also show how

these sorts have been formalized and proven sound and demonstrate that they can be

applied and even inferred automatically at scale via an examination of a variety of large

open-source digital designs and libraries. It is based on work published in PLDI 2021

(Citation: [6]; DOI: 10.1145/3453483.3454037; © 2021 ACM) and supported by the

National Science Foundation under Grants No. 1763699 and 1717779. Source code for

this is available as an accompanying artifact at https://zenodo.org/record/4695169.

Chapter 5 This chapter discusses PyLSE, a new pulse-transfer level language for

superconductor electronics built on the theory of automata. PyLSE enables the precise

specification of gate semantics via a transition system-based Python embedded domain-

specific language (DSL). I show that it is a effective framework for easily composing

cells into larger designs and that it facilitates the identification of timing and logic errors

through a mix of dynamic checks and sound static analysis. I also show how PyLSE

can be formalized mathematically, demonstrating its capabilities through the creation,

simulation, and verification of a selection of SCE designs. It is based on work that has

been submitted to a conference and is currently under review. I am the first author on

this work, and my co-authors are Georgios Tzimpragos, Harlan Kringen, Jennifer Volk,

Timothy Sherwood, and Ben Hardekopf.

5
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Chapter 2

Zarf: An Architecture Supporting

Formal and Compositional Binary

Analysis

2.1 Introduction

Embedded devices are ubiquitous, withmany nowplaying roles that support human

health, well-being, and safety. The critical nature of these systems — automotive, medi-

cal, cryptographic, avionic — is at odds with the increasing complexity of embedded

software overall: even simple devices can easily include an HTTP server for monitoring

purposes. Traditional processor interfaces are inherently global and stateful, making

the task of isolating and verifying critical application subsets a significant challenge.

Architectural extensions have been proposed that enhance the power, performance, and

functionality of systems, but in contrast, we cover the first architecture designed with

formal program analysis as a core motivating principle.

High-level, functional languages offer a remarkable ability to reason about the behav-

6
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ior of programs, but are often unsuited to low-level embedded systems, where reasoning

must be done at the assembly level to give a full picture of the code that will actually

execute. At a high level, in a language designed for verification, reasoning typically

requires relying on a language run-time that can be prohibitive for resource-constrained

or real-time embedded systems, and/or require the assumption that thousands of lines

of untrusted code in the language stack are correct.

Another approach is to directly model the processor interface by giving formal

semantics to the ISA. However, reasoning about binary behavior on traditional archi-

tectures is difficult and often left incomplete. Unless all program components and

architectural behaviors are included, any piece outside the expected model could mu-

tate a piece of machine state and violate the assumptions of the verification effort. Even

assuming that never happens, using a verified compiler, assuming other modules are

correct, using only a subset of the ISA and assuming the rest is unused, program-specific

reasoning is still difficult — i.e., reasoning about C still means reasoning about pointers,

memory mutation, and countless imperative, effectful behaviors.

We propose a system where the critical code can execute at the assembly level in a

way that is very similar to the underlying computational model upon which proof and

reasoning systems are already built. Under such a mode of computation, properties

such as isolation, composition, and correctness can be reasoned about incrementally,

rather than monolithically. However, instead of requiring a complete reprogramming

of all software in a system, we instead examine a novel system architecture consisting of

two cooperating layers: one built around a traditional imperative ISA, which can execute

arbitrary, untrusted code, and one built around a novel, complete, purely functional ISA

designed specifically to enable reasoning about behavior at the binary level. Application

behaviors that are mission critical can be hoisted piecemeal from the imperative to the

functional world as needed.
7



Zarf: An Architecture Supporting Formal and Compositional Binary Analysis Chapter 2

Our proposed system, the Zarf Architecture for Recursive Functions, observes the

following properties:

1. The functional ISA, “Zarf,” is devoid of all global or mutable state, and provides a

compact, complete, and mathematical semantics for the behavior of instructions;

2. The imperative ISA is strictly separated from the functional ISA, connected only

via a communication channel through which the system components can pass

values;

3. The subset of the application which operates on Zarf can be verified and reasoned

about without regard to the operation of the imperative components, meaning

that only the critical components need to be ported and modeled;

4. Reasoning on the functional ISA is provably composable — i.e., two separate

pieces can be statically shown to never interfere with each other.

To demonstrate the usefulness of this platform, we develop, model, and test a

sample application which implements an Implantable Cardio-Defibrillator (ICD) — an

embedded medical device which is implanted in a patient’s chest cavity, monitors the

heart, and administers shocks under certain conditions to prevent or counter cardiac

arrest. Though ICDs provide life-saving treatment for patients with serious arrhythmia,

these devices, along with other embedded medical devices, have seen thousands of

recalls due to dangerous software bugs [7, 8]. By leveraging this two-layer approach,

we are able to formally verify the correctness of a low-level implementation of the

core functions in Coq and directly extract executable assembly code without needing

software runtimes. The ISA semantics allow us to construct an integrity type system and

formally prove that the rest of the code never corrupts the inputs or outputs of the critical

functions. Furthermore, the functional abstraction built in to the binary code allows
8
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Figure 2.1: High-level Zarf system architecture: by dividing the system into two hard-
ware realms— one that provides a precise, mathematical semantics for reasoning about
program behavior, and the other a standard imperative core for legacy software — we
can formally verify and otherwise reason about critical subsets of applications without
needing to model and verify the entire program.

us to bound worst-case execution time, even in the face of garbage collection. Taken

altogether, we have an embedded medical application whose core components have

been proven correct, where non-interference is guaranteed, where real-time deadlines

are assured to be met, and where C code can execute arbitrary auxiliary functions in

parallel for monitoring. The high-level system architecture is shown in Figure 2.1.

Given the significant amount of related efforts in verification and ISA design, we

begin by summarizing how our work differs from previous efforts in the fields of

verification and architecture (Section 2.2). We then describe the Zarf platform in more

detail and describe a hardware implementation, which runs the application on an

FPGA (Section 2.3). Details of our embedded ICD software application and the ways

it can leverage the properties of the Zarf platform are described next (Section 2.4),
9
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followed by a precise definition of Zarf’s semantics (Section 2.5). We then discuss the

verification of multiple properties of the critical sub-components of the ICD, covering

correctness, timing, and non-interference (Section 2.6). Finally, we evaluate this system

architecture and approach, presenting hardware resource requirements of the novel

ISA, and examine the performance loss of the verified components when compared to

an unverified C alternative (Section 2.7), and conclude (Section 2.8).

2.2 Related Work

2.2.1 Verification

Our dual ISA approach, where one is untrusted and the other trusted, draws in part

onRushby’swork on security kernels [9]. He separatesmachine components into virtual

“regimes” and proves isolation. Having done so, Rushby can then show that security is

maintained when introducing clearly defined and limited channels of communication

whose information flow can be tracked. Our imperative and functional ISAs behave as

separate components, communicating only through a specified, dedicated channel, thus

eliminating any insecure information flow — via memory contamination, for example.

Our security type system draws from the work done on the Secure Lambda (SLam)

calculus by Heintze and Riecke [10] and its further development by Abadi et al. in

their Core Calculus of Dependency [11]. It also draws inspiration from Volpano [12]

et al., who created a type system for secure information flow for an imperative block-

structured language. By showing that their type system is sound, they show the absence

of flow from high-security data to lower-security output, or similarly, that low-security

data does not affect the integrity of higher-security data. Other seminal work on secure

information flow via the formulation of a type system include Denning [13], Goguen
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[14], Pottier’s information flow for ML [15], and Sabelfeld and Myers’s survey on

language-based information flow security [16].

Productive, expressive high-level languages that are also purely functional are

excellent source platforms for Zarf. Even languages like Haskell, though, can have

occasional weaknesses that can lead to runtime type-errors. Subsets such as Safe

Haskell [17] shore up these loopholes, and provide extensions for sandboxing arbitrary

untrusted code. Zarf provides isolation guarantees at the ISA level and does not require

runtimes, but relies on languages like Safe Haskell for source code development.

Previous work on ISA-level verification has often involved either simplified or in-

complete models of the architecture. These can be in the form of new “idealized”

assembly-like languages: Yu et al. [18] use Coq to apply Hoare-style reasoning for as-

sembly programs written in a simple RISC-like language. They also provide a certified

memory management library for the machine they describe. Chlipala presents Bedrock,

a framework that facilitates the implementation and verification of low-level programs

[19], but limits available memory structures.

Kami [20] is a platform for specifying, implementing, and verifying hardware de-

signs in Coq. By making the language of design the same as the language of verification,

the gap that traditionally exists between high-level specification and actual hardware

implementation is minimized. A key distinction between Kami and our work is that

Zarf focuses on building a processor specifically to make software verification easier,

while Kami focuses on the task of specifying and building verifiable hardware. The

two are very complementary — you can build a traditional imperative machine using

Kami (e.g. their pipelined RISC-V processor implementation), and you can build a Zarf

machine using traditional hardware design.

Verification has also been done for subsets of existing machines. For example,

a “substantial” subset of the Motorola MC68020 interface is modeled and used to
11



Zarf: An Architecture Supporting Formal and Compositional Binary Analysis Chapter 2

mechanically prove the correctness of quicksort, GCD, and binary search [21]; other

examples include a formalization of the SPARC instruction set, including some of

the more complex properties, such as branch delay slots [22]; and subsets of x86

[23]. One of the biggest efforts to date has been a formal model of the ARMv7 ISA

using a monadic specification in HOL4 [24]. Moore developed Piton, a high level

assembly language and a verified compiler for the FM8502 microprocessor [25], which

complemented the verification work done on the FM8502 implementation [26]. These

are large efforts because of the difficulty in reasoning about imperative systems. At

higher levels of abstraction, entire journal issues have been devoted to works on Java

bytecode verification [27].

In addition to proofs on machine code for existing machines, it is also possible to

define new assembly abstractions that carry useful information. Typed assembly as an

intermediate representation was previously identified as a method for Proof-Carrying

Code [28], where machine-checked proofs guarantee properties of a program [29].

Typed assemblies and intermediate representations have seen extensive use in the veri-

fication community [30, 19, 31, 32] and have been extended with dependent types [33],

allowing for more expressive programs and proofs at the assembly level.

Verified compilers are a popular topic in the verification community [34, 35, 36, 37],

the most well-known example being CompCert [38], a verified C compiler. Verified

compilers are usually equipped with a proof of semantics preservation, demonstrating

that for every output program, the semantics match those of the corresponding input

program. A verified compiler does not provide tools for, nor simplify the process of

doing, program-specific reasoning. One needs a secondary tool-chain for reasoning

about source programs, such as the Verified Software Toolchain (VST) [39] for Com-

pCert. These frameworks often have a great cost, mandating the use of sophisticated

program logics, such as higher-order separation logic in VST, in order to fully reason
12
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about possible program behaviors.

Further, in many systems, it’s possible that not all source code is available; without

being able to reason about binary programs, guarantees made on a piece of the source

program (and preserved by the verified compiler) may be violated by other components.

Extensions to support combining the output of verified compilers, such as separate

compilation and linking, are still an active research area [40, 41]. As work on verified

compilers requires a semantic model of the ISA, it is complemented by our work, which

gives complete and formal semantics for an ISA.

Previouswork at the intersection of verification and biological systems has attempted

to improve device reliability through modeling efforts. This includes work that formu-

lates real-time automata models of the heart for device testing [42], formal models of

pacing systems in Z notation [43], quantitative and automated checking of the interac-

tion of heart-pacemaker automata to verify pacemaker properties [44], and semi-formal

verification by combining platform-dependent and independent model checking to

exhaustively check the state space of an embedded system [45]. Our work is comple-

mented by verification works such as these that refine device specification by taking

into account device-environment interactions.

2.2.2 Architecture

The SECDMachine [46] is an abstract machine for evaluating arithmetic expressions

based in the lambda calculus, designed in 1963 as a target for functional language

compilers. It describes the concept of “state” (consisting of a Stack, Environment,

Control, and Dump) and transitions between states during said evaluation. Interpreters

for SECD run on standard, imperative hardware. Hardware implementations of the

SECD Machine have been produced [47], which explore the implementation of SECD
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at the RTL and transistor level, but present the same high-level interface. The SECD

hardware provides an abstract-machine semantics, indicating how the machine state

changes with each instruction. Our verification layer makes machine components

fully transparent, presenting a higher-level small-step operational semantics, where

instructions affect an abstract environment, and a big-step semantics, which immediately

reduces each operation to a value. These latter two versions of the semantics are more

compact, precise, and useful for typical program-level reasoning.

The SKI Reduction Machine [48] was a hardware platform whose machine code

was specially designed to do reductions on simple combinators, this being the basis of

computation. Like our verification layer, it was garbage-collected and its language was

purely applicative. The goal was to create a machine with a fast, simple, and complete

ISA. The choice to use the “simpler” SKI model means that machine instructions are a

step removed from the typically function-based, mathematical methods of reasoning

about programs. Our functional ISA,while also simple and complete, chooses somewhat

more robust instructions based on function application; though the implementation is

more complicated, modern hardware resources can easily handle the resulting state

machine, giving a simple ISA that is sufficiently high-level for program reasoning.

The most famous work on hardware support for functional programming was on

Lisp Machines [49, 50, 51]. Lisp machines provided a specialized instruction set and

data format to efficiently implement the most common list operations used in functional

programming. For example, Knight [51] describes a machine with instructions for Lisp

primitives such as CAR and CADR, and also for complex operations like CALL and

MOVE. While these these machines partially inspired this work, Lisp Machines are

not directly applicable to the problem at hand. Side-effects on global state at the ISA

level are critical to the operation of these machines, and while fast function calls are

supported, the stepwise register-memory-update model common to more traditional
14
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ISAs is still a foundation of these Lisp Machine ISAs. In fact, several commercial Lisp

Machine efforts attempted to capitalize on this fact by building Lisp Machines as a thin

translation layer on top of other processors.

Flicker also dealt with architectural support for a smaller TCB in the presence of

untrusted, imperative code, but did so with architectural extensions that could create

small, independent, trusted bubbles within untrusted code [52]. Our architecture is

almost inverted, with a trusted region providing the main control, calling out to an

untrusted core as needed. Previous works such as NoHype [53] dealt with raising the

level of abstraction of the ISA and factoring software responsibilities into the hardware.

Our verification layer shares some of these characteristics, but deals with verification

instead of virtualization, as well as being a complete, self-contained, functional ISA.

Previous work has explored the security vulnerabilities present in many embedded

medical devices, as well as zero-power defenses against them [54, 55, 56]. The focus of

our work is analysis and correctness properties, and we do not deal with security.

2.3 Hardware Architecture and ISA

Our system relies on two separate layers, running two different ISAs, connected

only by a data channel. This allows one of the layers to be specialized to the execution

of machine code with 1) a compact, precise, and complete semantics highly amenable

to proofs, and 2) the ability to compose verified pieces safely. It is entirely possible that

all code in the system be written to be purely functional and run on Zarf: the ISA for

this layer is complete. However, embedded devices often contain a mix of software,

including legacy code or nice-to-have features that do not affect the application’s be-

havior, such as relaying data and diagnostic information to outside receivers. With a

two-layer approach, we can run imperative code that is orthogonal to the operation of
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critical application components while still connecting with the vetted, functional code

in a structured way. This, in turn, allows code to be formally verified piecemeal, with

functions “raised” into Zarf as deemed necessary.

The following subsections describe the interface and construction of Zarf, including

the reasons we take an approach much closer to the lambda calculus underlying most

software proof techniques, how we capture this style of execution in an instruction set,

the semantics for that instruction set, and more practical considerations such as I/O,

errors, and ALU functions.

2.3.1 Design Goals

Normal, imperative architectures have been difficult to model, and the task of

composing verified components is still an open problem [40, 41]. We identify the

following features as undesirable and counterproductive to the goal of assembly-level

verification:

1. Large amounts of global machine state (memory, stack, registers, etc.) directly

accessible to instructions, all of which must be modeled and managed in every

proof, and which inhibit modularity: state may be modified by code you haven’t

seen.

2. The mutable nature of machine state, which prevents abstraction and composition

when reasoning about functions or sets of instructions.

3. A large number of instructions and features: a complete model must incorporate

all of them (e.g., fully modeling the behavior of the ARMv7 was 6,500 lines of

HOL4 [24]).
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4. Arbitrary control flow, which often requires complex and approximate analyses

to soundly determine possible control flows [57].

5. Unenforced function call conventions, meaning onemust prove that every function

respects the convention.

6. Implicit instruction semantics, such as exceptions where “jump” becomes “jump

and update registers on certain conditions.”

To avoid these traits, we design an interface that is small, explicit in all arguments,

and completely free of state manipulation and side effects — with the exception of

I/O, which is necessary for programs to be useful. Without explicit state to reference

(memory and registers), standard imperative operations become impossible, and we

must raise the level of abstraction. Instead of imperative instructions acting as the

building blocks of a program, our basic unit is the function. This is a major departure

from a typical imperative assembly, where the notion of a “function” is a higher-level

construct consisting of a label, control flow operations, and a calling convention enforced

by the compiler — but which has no definition in the machine itself. By bringing the

definition of functions to the ISA level, they become not just callable “methods” that

serve to separate out independent routines, but are actually strict functions in the

mathematical sense: they have no side effects, never mutate state, and simply map

inputs to outputs. This change allows us to attach precise and formal semantics to the

ISA operations.

2.3.2 Description and Semantics

Zarf’s functional ISA is effectively an a) untyped, b) lambda-lifted, c) adminis-

trative normal form (ANF) lambda calculus. Those limitations are a result of the
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x ∈ Variable n ∈ Z fn, cn ∈ Name

p ∈ ProgramF
−−−→
decl fun main = e

decl ∈ DeclarationF cons | func
cons ∈ ConstructorF con cn x⃗

func ∈ FunctionF fun fn x⃗ = e
e ∈ ExpressionF let | case | res

let ∈ LetF let x = id −−→arg in e

case ∈ CaseF case arg of
−→
br else e

res ∈ ResultF result arg
br ∈ BranchF cn x⃗ ⇒ e | n ⇒ e

id ∈ IdentifierF x | fn | cn | op
arg ∈ ArgumentF n | x

op ∈ PrimOpF + | − | × | ÷ | =
| < | ≤ | ∧ | ∨ | ∧̄ | ⊻

| ⊕ | ≪ | ≫ | sra | ¬

| getint | putint

Figure 2.2: Abstract syntax of Zarf’s functional ISA. A program is a set of function
and constructor declarations, where functions are composed solely of let, case, and
result expressions, and constructors are tuples with unique names. Case expressions
contain branches and serve as the mechanism for both control flow and deconstruction
of constructor forms. An arrow over any metavariable (e.g. x⃗) signifies a list of zero or
more elements. op refers to a function that is implemented in hardware (such as ALU
operations); though the execution of the function invokes a hardware unit instead of a
piece of software, the functional interface is identical to program-defined functions.
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implementation being done in real hardware: a) to avoid the complexity of a hardware

typechecker, the assembly is untyped1; b) because every function must live somewhere

in the global instruction memory, only top-level declarations of functions are allowed

(lambda-lifted); c) because the instruction words are fixed-width with a static number

of operands, nested expressions are not allowed and every sub-expression must be

bound to its own variable (ANF). The abstract syntax of Zarf assembly is given in

Figure 2.2.

All words in the machine are 32-bits. Each binary program starts with a magic word,

a word-length integer N stating how many functions are contained in the program,

and then a sequence of N functions. Each function starts with an informational word

that lets the machine know the “fingerprint” of the function (including the number of

arguments expected and how many locals will be used) and a word-length integer M

to specify that the body of the function is M words long. The remaining M words of the

function are then composed entirely of the individual instructions of the machine.

Each function, as it is loaded, is given a unique and sequential identifier. These

function identifiers are the only globally visible state in the system and serve as both a

kind of name and a kind of pointer back to the code. Other functions can refer to, test,

and apply arguments to function identifiers. There are two varieties of function identi-

fiers: those that refer to full functions that contain a body of code, and “constructors,”

which have no body at all. Constructors are essentially stub functions and cannot be

executed. However, just like other functions, you can apply arguments to them. These

special function identifiers thus can serve as a “name” for software data types, where

arguments are the composed data elements. (In more formal terms, you can use our

constructors to implement algebraic data types.)
1The original ISA definition as presented in the paper was untyped; in later work, we extended the

ISA to include type annotations and a hardware typechecker.
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The words defining the body of a function are built out of just three instructions:

let, case, and result, which we will describe below. Unlike RISC instructions, let

and case can be multiple words long (depending on the number of arguments and

branches, respectively). However, unlike most CISC instructions, each piece of the

variable length instruction is also word-aligned and trivial to decode.

Zarf has no programmer-visible registers or memory addresses, but instructions

will still need to reference particular data elements. Instructions can refer to data by

its source and index, where the source is one of a predefined set — e.g., local and arg,

which serve a purpose similar to the stack on a traditional machine. The local and arg

indices might be analogous to stack offsets, while the actual addresses themselves are

never visible.

The primary ways of generating Zarf assembly are via extraction from Coq and

writing it by hand. We also have a Haskell compiler that supporting a subset of basic

Haskell constructs. In our experience, Zarf assembly code resembles a typical functional

programming language like desugared Haskell or OCaml, and the resultant express-

ibility makes directly writing assembly relatively easy; the user doesn’t need to worry

about memory address calculations, maintaining register or stack state across function

calls, or the myriad other things that make programming traditional ISAs tedious and

error-prone. For more information on automatic Coq extraction, see our discussion of

the ICD implementation in Section 2.6.

Figure 2.5 gives the complete ISA behavior using a big-step semantics, which ex-

plains how each instruction reduces to a value. This semantics uses eager evaluation

for simplicity; though the current hardware implementation uses lazy semantics, the

difference is not observable in our application because I/O interactions are localized

to a specific function and always evaluated immediately. The semantics use assembly

keywords for readability; Figure 2.3 shows how the assembly maps one-to-one with
20



Zarf: An Architecture Supporting Formal and Compositional Binary Analysis Chapter 2

the binary encoding, and Figure 2.7 shows how low-level Coq code can be directly

converted to our assembly.

2.3.3 Instruction Set

The let instruction applies a function to arguments and assigns it a local identifier.

The first word in the let instruction indicates a function identifier or closure object

and the number of argument words that follow. Note that unlike a function “call”, let

does not immediately change the control flow or force evaluation of arguments; rather

it creates a new structure in memory (closure) tying the code (function identifier) to

the data (arguments), which, when finally needed, can actually be evaluated (using

lazy evaluation semantics). Additionally, the let instruction allows partial application,

meaning that new functions (but not function identifiers) can be dynamically produced

by applying a function identifier to some, but not all, of its arguments.

The case instruction provides pattern-matching for control flow. It takes a value,

then makes a set of equality comparisons, one for each “pattern” provided. The first

word of the case instruction indicates a piece of data to evaluate. As we need an actual

value, this is the point in execution that forces evaluation of structures created with

let— however, it is evaluated only enough to get a value with which comparisons can

be made; specifically, until it results in either an integer or a constructor object2. The

words following the instruction encode patterns (pattern_literal and pattern_cons)

against which to match the case value. If the case value exactly equals the literal value

or function (i.e. constructor) identifier, execution proceeds with the next instruction;

otherwise, it skips the number of words specified in the pattern argument. A matching

pattern_else is required for every casewhich will be executedwhen no other matches
2More precisely, evaluation of that argument will always produces a result in Weak Head-Normal

Form (WHNF), but never a lambda abstraction.
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Figure 2.3: How the high-level assembly instructions are directly compiled into a
Zarf binary for execution. This example shows the map function, along with the list
constructors, in (a) high-level untyped assembly, (b) machine assembly, and (c) binary.
(a) The standard linked-list definition requires just two constructors: a list is either
empty or a 2-element struct containing a head (a value) and a tail (a list) [lines 1-2].
The function map takes a function and a list as arguments [line 3]; it builds a new list,
applying the function to each list element. If the argument list is empty, it returns an
empty list [lines 5-6]. Otherwise, if the list matches against the head/tail constructor
[line 7], it applies the function it was given to the list element [lines 8-9], calls map
recursively on the list tail [lines 10-12], builds a new list [lines 13-15], and yields that
new list [line 16]. The else branch is not shown. (b) In the lowering to machine
assembly, names are replaced with local indices, addressing a value on the locals stack
(e.g., list′ becomes local 2 [line 13]). Function allocations are broken up so that each
argument occupies its own word. (c) The binary is a direct mapping from the assembly
in (b), simply translating ops to opcodes and data sources to integer identifiers. ‘x’
indicates an unused field. (d) Binary encoding. Each word of the binary is either the
start of a function, the start of an instruction, or an argument word in a let instruction.
With no architecturally visible state, data is accessed with a scoped system where the
program identifies source and index; all data references use the same source/index
pattern.
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are found (and demarcates the end of the case instruction encoding). Case/pattern

sequences not adhering to the encoding described are malformed and invalid — e.g.,

you cannot skip to the middle of a branch, or have a case without an else branch.

The result instruction is a single word, indicating a single piece of data that the

current function should yield. Every branch of every function must terminate with a

result instruction (disallowing re-convergent branches means the simple pattern-skip

mechanism is all that is necessary for control flow). Functions that do not produce a

value do not make sense in an environment without side effects, and so are disallowed.

After a result, control flow passes to the case instruction where the function result

was required.

We realize that this is a departure from traditional hardware instructions and suggest

reference to Figure 2.3 to help ground our descriptions in a concrete example. Figure

2.3 shows a small function, map, written in high-level assembly, machine assembly, and

encoded as a binary. A more thorough description of the semantics of each of these

instructions is found in Section 2.5.

2.3.4 Built-In Functions, I/O, and Errors

ALU operations are, for the most part, already purely mathematical functions —

they just map inputs to an output. The Zarf functional ISA is built around the notion of

function calls, so no newmechanismor instructions are needed to use the hardwareALU.

Invoking a hardware “add” is the same as invoking a program-supplied function. In our

prototype, function indices less than 256 (0x100) are reserved for hardware operations;

the first program-supplied function, main, is 0x100, with functions numbered up from

there. During evaluation, if the machine encounters a function with an index less than

0x100, it knows to invoke the ALU instead of jumping to a space in instruction memory.
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The only two functions with side-effects in the system, input and output, are also

primitive functions. The input function takes one argument (a port number) and

returns a single word from that port; the output function takes two arguments, a

port and a value, and writes its result to the port, returning the value written. Since

data dependencies are never violated in function evaluation, software can ensure I/O

operations always occur in the right order even in a pure functional environment by

introducing artificial data dependencies; this is the principle underlying the I/O monad

[58, 59], used prominently in languages like Haskell.

In a purely functional system there are no side effects, and thus no notion of an

“exception”. For program-defined functions, this just requires that every branch of

every case return a value (that value could be a program-defined error). However,

some invalid conditions resulting from a malformed program can still occur at runtime.

To respect the purely functional system, these must cause a non-effectful result that

is still distinguishable from valid results. Our solution is to define a “runtime error

constructor” in the space of reserved functions. Every function, both hardware- and

software-defined, can potentially return an instance of the error constructor. The ISA

semantics are undefined in these error cases, because it’s very easy to avoid— compiling

from any Hindley-Milner typechecked language will guarantee the absence of runtime

type errors [60, 61].

2.4 System Software

This section describes the software architecture across the two realms (functional

and imperative) of the system, and provides an overview of the ICD and the functional

coroutines.
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Figure 2.4: The ECG takes input signals sampled at 200 Hz and filters them multiple
times, after which the peaks are classified and the rate of heartbeat determined. These
values are fed to an ATP (antitachycardia pacing) procedure, which decides if ventricu-
lar tachycardia is occurring based on current and previous heart rate, and administers
pacing shocks to prevent acceleration and ventricular fibrillation (a form of cardiac
arrest).
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2.4.1 Functional vs. Imperative

As our system is composed of two small and separate computational layers, the

software is split across two different ISAs. For existing applications, or applications

prototyped for existing platforms, the decision of which components to migrate to Zarf

represents a trade-off of increased abstraction and verification capability for additional

development effort and some decrease in performance. Section 2.7 provides some

quantitative worst-case bounds for this trade-off.

Zarf runs a small microkernel based on cooperative coroutines [62, 63] to handle

the scheduling and communication of different software components. This allows

us to more easily group and reason about code in terms of higher-level behaviors

— i.e., the small surface area of each coroutine means they can be considered (and

occasionally verified) in blocks, as collections of functions with a single specification

and interface. The cooperative nature of the system is a design choice that allows us

to avoid interrupts, which would complicate proofs of a single coroutine’s behavior.

Timing analysis (section 2.6.2) ensures each coroutine always returns control.

Zarf enables reasoning about these coroutines at the assembly and binary level.

Section 2.6 demonstrates different properties that can be verified. The integrity type

system allows a developer to statically prove that a given set of coroutines (and the

microkernel itself) will execute in cooperation without one coroutine corrupting values

important to another. This composability of verification is extremely difficult on tradi-

tional architectures, as the global and mutable nature of all state makes it quite easy for

any software component to affect any other.

The imperative layer — which can be any embedded CPU, but for our purposes is a

Xilinx MicroBlaze processor — runs whatever pieces of the software are not placed on

Zarf. This allows for monitoring software, low-level drivers, communication protocols,
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and other complex, imperative code to exist and run without requiring modeling or

pure-functional implementations. As this area of the system is untrusted and unverified,

anything on which the critical components depend should be rewritten to run on Zarf.

In our sample application, three application coroutines are run on Zarf: one that

handles the core ICD application, an I/O routine that handles the timing of reading

the values from the patient’s heart and outputting when shocks should occur, and a

routine that sends values to themonitoring software on the imperative layer. The system

operates in real-time, reading a single value from the heart, running ECG and ICD

processing, and communicating the resulting value back out. In our application, the

monitoring software tracks the number of times treatment occurs, and, when prompted

from its communication channel, will output that number. This imperative software

could be arbitrarily complex and handle more complicated monitoring and diagnosis,

communication drivers to communicate with the outside world, or other features; as it

is a standard imperative core, any embedded C code can be easily compiled for it with

an off-the-shelf compiler.

2.4.2 ICD

ICDs are small, battery-powered, embedded systems which are implanted in a

patient’s chest cavity and connect directly with the heart. For patients with arrhythmia

and at risk for heart failure, an ICD is a potentially life-saving device. Currently, the

primary use of ICDs is to detect dangerous arrhthymias (such as ventricular tachycardia,

or VT) and administer pacing shocks (anti-tachycardia pacing, or ATP). These shocks

help prevent the acceleration in heart rate leading to ventricular fibrillation, a form of

cardiac arrest.

From 1990 to 2000, over 200,000 ICDs and pacemakers were recalled due to software
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issues [7]. Between 2001 and 2015, over 150,000 implanted medical devices were

recalled by the FDA because of life-threatening software bugs [8]. However, ICDs are

credited with saving thousands of lives; for patients who have survived life-threatening

arrhthymia, ICDs decrease mortality rates by 20-30% over medication [64, 65, 66].

Currently, around 10,000 new patients have an ICD implanted each month [67], and

around 800,000 people are living with ICDs [68].

The core of our ICD is an embedded, real-time ECG algorithm that performs QRS3

detection on raw electrocardiogram data to determine the timing between heartbeats.

We work off of an established real-time QRS detection algorithm [69], which has seen

wide use and been the subject of studies examining its performance and efficacy [70].

An open-source update of several versions of the algorithm [71] is available; we use

the results of this open-source work as the basis of our algorithm’s specification as well

as the C alternative. After the ECG algorithm detects the pacing between heartbeats,

the ATP function checks for signs of ventricular tachycardia and, if found, administers

a series of pacing shocks. We implement the VT test and ATP treatment published in

[72].

The I/O coroutine is passed the output of the previous iteration of the ICD coroutine.

A hardware timer is used to ensure that I/O events occur at the correct frequency. When

the correct time has elapsed (5 ms), the I/O coroutine outputs the given value and

reads the next input value. It yields this value to the microkernel.

This input is then passed through to the ICD coroutine, which implements a series

of filter passes to detect the spacing between QRS complexes (Figure 2.4 illustrates

the ECG filter passes). If 18 of the last 24 beats had periods less than 360 ms (cor-

responding to a heart rate greater than 167 bpm), the ICD coroutine moves into a
3The “QRS complex” is made up of the rapid sequence of Q, R, and S waves corresponding to the

depolarization of the left and right ventricles of the heart, forming the distinctive peak in an ECG.
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treatment-administering state, where it outputs three sequences of eight pulses at 88%

of the current heartrate, with a 20 ms decrement between sequences. This is designed

to prevent continued acceleration and restore a safe rhythm.

The monitoring software, which runs on the MicroBlaze, receives the output of the

ICD coroutine each cycle. A command can be given on the diagnostic input channel for

the software to output the number of times treatment has occurred.

I/O events occur at a fixed frequency of 200 Hz. Timing analysis in Section 2.6.2

confirms that, after an input event, the entire cycle of each coroutine running and

yielding, including garbage collection, is able to conclude well within the 5 ms window,

meaning that the entire system is always able to meet its real-time deadline.

2.5 ISA Semantics

Zarf has the core goal of providing concise, mathematical semantics for its hardware

ISA. These can be found in Figure 2.5, which gives the complete ISA behavior using a

big-step semantics, explaining how each instruction reduces to a value. This semantics

uses eager evaluation for simplicity; though the current hardware implementation

uses lazy semantics, the difference is not observable in our application because I/O

interactions are localized to a specific function and always evaluated immediately.

The semantics are discussed in more detail in the following subsections. Note that

terms introduced in the abstract syntax (Figure 2.2) are used in the semantics. Each

rule (or helper function) is applicable in a different case, depending on what is under

evaluation; the scenarios are all mutually exclusive, meaning that there is always exactly

one rule that can (and should) be applied at every step.
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c ∈ Constructor = Name ×
−−−−→
Value clo ∈ Closure = (λx⃗.e) ×

−−−−→
Value

v ∈ Value = Z ⊎ Constructor ⊎ Closure ρ ∈ Env = Variable→ Value

⊢ e ⇓ v

⊢
−−−→
decl fun main = e ⇓ v

(program) v = ρ(arg)
ρ ⊢ result arg ⇓ v

(result)

v⃗1 = ρ(−−→arg) v2 = applyCn(cn,v⃗1) ρ[x 7→ v2] ⊢ e ⇓ v3

ρ ⊢ let x = cn −−→arg in e ⇓ v3
(let-con)

fn < {getint,putint} fun fn x⃗2 = e2 ∈
−−−→
decl

v⃗1 = ρ(−−→arg) v2 = applyFn((λx⃗2.e2, []),v⃗1,ρ) ρ[x1 7→ v2] ⊢ e1 ⇓ v3

ρ ⊢ let x1 = fn −−→arg in e1 ⇓ v3
(let-fun)

v1 = ρ(x2) v⃗2 = ρ(−−→arg) v3 = applyFn(v1,v⃗2,ρ) ρ[x1 7→ v3] ⊢ e ⇓ v4

ρ ⊢ let x1 = x2
−−→arg in e ⇓ v4

(let-var)

v⃗1 = ρ(−−→arg) v2 = applyPrim(op, v⃗1) ρ[x 7→ v2] ⊢ e ⇓ v3

ρ ⊢ let x = op −−→arg in e ⇓ v3
(let-prim)

(cn, v⃗1) = ρ(arg) (cn x⃗ ⇒ e1) ∈
−→
br ρ[x⃗ 7→ v⃗1] ⊢ e1 ⇓ v2

ρ ⊢ case arg of
−→
br else e2 ⇓ v2

(case-con)

n = ρ(arg) (n ⇒ e1) ∈
−→
br ρ ⊢ e1 ⇓ v

ρ ⊢ case arg of
−→
br else e2 ⇓ v

(case-lit)

((cn,−→v1) = ρ(arg) (cn x⃗ ⇒ e1) <
−→
br) ∨ (n = ρ(arg) (n ⇒ e1) <

−→
br)

ρ ⊢ e2 ⇓ v2

ρ ⊢ case arg of
−→
br else e2 ⇓ v2

(case-else)

n2 is input from port n1

ρ[x 7→ n2] ⊢ e ⇓ v
ρ ⊢ let x = getint n1 in e ⇓ v

(getint)

n1 is a port
n2 = ρ(arg) ρ[x 7→ n2] ⊢ e ⇓ v
ρ ⊢ let x = putint n1 arg in e ⇓ v

(putint)

Figure 2.5: Big-step semantics for Zarf’s functional ISA. It is a ternary relation on
an environment; a let, case, or result expression; and the value to which it evaluates.
Evaluation begins with the main function’s body. ρ[x 7→ v] returns an updated copy of
the environment with x mapped to v. getint gets an integer from a specified port, and
putint puts an integer onto a specified port; both are the only mechanisms for I/O.
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applyFn((λx⃗1.e, v⃗1),v⃗2,ρ) =

v if |⃗v2| = 0, |⃗v1| = |x⃗1|, and
ρ[x⃗1 7→ v⃗1] ⊢ e ⇓ v

(λx⃗1.e, v⃗1) if |⃗v2| = 0 and |⃗v1| < |x⃗1|

applyFn((λx⃗1.e, v⃗1 :+ hd(v⃗2)),tl(v⃗2),ρ) if |⃗v2| > 0 and |⃗v1| < |x⃗1|

applyFn((λx⃗2.e′, v⃗3),v⃗2,ρ) if |⃗v2| > 0, |x⃗1| = |⃗v1|, and
ρ[x⃗1 7→ v⃗1] ⊢ e ⇓ (λx⃗2.e′, v⃗3)

applyCn(cn,v⃗) =

(cn, v⃗) if (con cn x⃗) ∈
−−−→
decl and |⃗v| = |x⃗|

(λx⃗.let c = cn x⃗ in result c, v⃗) if (con cn x⃗) ∈
−−−→
decl and |⃗v| < |x⃗|

ρ(arg) =

n if arg = n
v if arg = x and (x 7→ v) ∈ ρ

applyPrim(op, v⃗1) =


v if |⃗v1| = arity(op) and

v = eval(op, v⃗1)
(λx⃗1.let x2 = op x⃗1 in result x2, v⃗1) if |⃗v1| < arity(op) and

|x⃗1| = arity(op)

Figure 2.6: Big-step semantics helpers for Zarf’s functional ISA. applyFn (applyCn)
performs function (constructor) application. x⃗ :+ y appends y to the end of x⃗, creating a
new list. |x⃗|means length of the list x⃗. eval returns the value of applying a primitive
operation to arguments. Because functions are lambda-lifted, our version of closures
track the list of values to be applied upon saturation, rather than an entire environment
like normal closures.
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2.5.1 Names and Programs

A Constructor is a unique name and a list of zero or more values. Constructors

serve as software data types, as a simple system for building up more complex data

objects. The name indicates the “type” of the constructor, encoded statically as a unique

integer, which the machine uses at runtime to distinguish constructors of different

types.

A Closure is a function object, tying a function to a list of zero or more values, which

are the arguments that have already been supplied. Closures allow for the dynamic

construction of function objects from statically defined functions: e.g., applying the

argument 1 to the static binary function add creates a new closure, which expects one

argument, that performs the function λx.x + 1.

A Value is either an integer, a constructor, or a closure. The machine uses one bit at

runtime to track which values are primitives and which are objects (either constructors

or closures), and identifies constructor types with their name (unique type integer),

but is otherwise untyped.

An Environment is a semantic entity mapping variables (local names) to values

(integers, constructors, and closures). The semantics are high-level and do not specify

how the machine should implement the behavior of the environment, but function

arguments and local variables fall into the environment of each function. The set of

functions (declared at the top level) are stored in a list of declarations −−−→decl, which is

essentially a map from the function’s name to its parameter list and body.

The PROGRAM rule states that there should be a set of zero or more function and

constructor declarations, and one function mainwith a body expression e. Given the

declarations and main function, and application of the semantic rules, we can reduce e

to a value.
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2.5.2 Result

The RESULT rule states that, given the current function environment and a result

instruction with argument arg, we can reduce the current function execution to a single

value v using the environment to look up arg, if arg is a variable, or simply returning it,

if arg is a number.

2.5.3 Let

A let instructionwill be reducedusing one of four rules: LET-FUN, LET-CON, LET-VAR,

or LET-PRIM. The first is used for static program function application; i.e., applying

arguments to a program-defined function (which excludes I/O and hardware func-

tions). Similarly, the second is used for static constructor application; i.e., applying

arguments to a program-defined constructor. The third is used to apply arguments

to a runtime value, which will be a closure expecting additional arguments. The final

is application on primitive (hardware ALU) functions. I/O functions (getint and

putint) have separate rules.

LET-FUN is used when the instruction under evaluation is a let instruction applying

zero or more arguments to a program-defined function f n. Its premises state that the

function should not be getint or putint, that the function should be defined in the

program declarations, that the arguments should all be reducible to a sequence of values
−→v1 using the current function environment, that application of the applyFn helper rule

on the body of f n with arguments −→v1 will result in a value v2, and finally, that binding

a new local variable to v2 will allow us to reduce the remainder of the instructions

in the current function to a value.4 The final premise of the rule (ρ[x1 7→ v2] ⊢ e1 ⇓ v3)

4As these are big-step semantics, rules indicate how expressions reduce directly to values, rather than
giving step-by-step instructions for performing the reduction. In evaluating LET-FUN, for example, the rule
does not instruct you to “call” into the indicated function, but rather just states that the function reduces
to a value (as it must, eventually), then uses the value; as we are writing mathematical expressions, the
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continues the execution: e1 is the remainder of the instructions, where the environment

now includes a mapping from x1 to the newly calculated value v2. A premise of this

format occurs in every rule for non-terminal instructions (everything but PROGRAM and

RESULT); the semantics treat the instructions as recursive, such that each instruction

“points” to the rest of the instructions.

The premises for LET-CON are very similar to those of LET-FUN, with the primary

difference coming in applyCn. While function applications can be oversaturated, we

disallow oversaturation of constructor applications for simplicity; we haven’t found this

overly restrictive at all in practice. Otherwise, the rules behaves similarly, storing the

value that results from applying arguments to a constructor into the environment ρ

before continuing to evaluate the next expression e to a value v3. In this way, closures

and constructors are structurally the same; both are function identifiers with a sequence

of arguments. The difference is that closures are already fully evaluated.

LET-VAR is used when a let instruction applies arguments to a dynamic (runtime)

value x2. The premises state that x2 should be reducible via the environment to a value

v1, that the sequence of arguments are reducible to a sequence of values −→v2, that applying

the arguments −→v2 to the object v1 with the applyFn operation will result in a value v3,

and that binding a local variable to that value will allow us to reduce the remainder

of the instructions to a value. The applyFn is written to only accept closures as its

first arguments; in calling it, there is an implicit premise that v1 is a closure object. x2

reducing to any other type of value (an integer or constructor) is a runtime error, and

can occur only if the program is not well-typed.

LET-PRIM is similar to LET-FUN, but is used only when the static function is a primi-

tive operation. These functions must be treated differently because there is no program

reduction is assumed to occur immediately. One can still “execute” the semantics by stepping through,
evaluating operands as necessary using the rules in places that the semantics simply reduce immediately
to a value.
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definition for add, or sub, or mult; during machine execution, the hardware ALU han-

dles them. The semantics define ALU operations the sameway as the machine (as 32-bit

modular mathematical operations). The premises of LET-PRIM contain no function

declaration; in addition, they invoke applyPrim instead of applyFn. Otherwise, the

application is similar: the function call reduces to a value, and binding that value to a

local variable will allow us to reduce the remainder of the instructions in the function

under evaluation.

2.5.4 I/O

GETINT is the rule for the hardware-defined input function; it is invoked when a let

instruction uses getint in a program, which takes a single argument n1. The premises

state that reading a value from port n1 should return an integer n2; binding that value

to a local variable, we can proceed with evaluation.

PUTINT is the rule for the output function (also hardware-defined); it takes two

values: a port number n1, and an arg that should be output. The premises use the

environment to reduce arg to a value; not stated (as it is a side effect) is that the

hardware sends this integer value to the indicated port. The integer sent is also used

as the value to which the instruction reduces, so it is bound to a local variable, and

evaluation proceeds.

2.5.5 Case

We use two rules for the evaluation of case instructions (CASE-CON and CASE-LIT,

for constructor and integer scrutinees, respectively); in addition, the rule CASE-ELSE

handles the “else” branch for each of the two case varieties.

These CASE rules are invoked when a case instruction is under evaluation; which
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rule is used depends on what the scrutinee reduces to: if it is a constructor, CASE-CON

is used, while CASE-LIT handles integers. A case instruction includes a series of zero

or more branches, each of which has a constructor name or integer as a guard, and

one else branch. Exactly one branch will always execute. Since constructor “names”

become unique integers, constructor and integer matches must be encoded differently

to distinguish which variety each branch is meant to match.

The first premise of CASE-CON indicates that the scrutinee arg must reduce to a

constructor; the second says to take the expression from the branch with the matching

constructor name and use that for the remainder of the function, which will reduce to a

value. CASE-LIT is similar, but requires the arg to reduce to an integer, and takes the

expression from the branch that attempts to match exactly that integer.

The CASE-ELSE rule is invoked when no matching branch is found for the case in-

struction (indicated in the disjuncted premises); there, it indicates to take the expression

from the else branch in the instruction and use that for the remainder of the function.

2.5.6 apply Helper Functions

applyFn is perhaps the most complicated rule, because it is where currying is

handled—different actionsmust be taken if too few, toomany, or just enough arguments

are supplied to a function application. The helper rule takes a closure and a list of zero

or more values, which will be arguments to the closure.

1. If zero arguments are supplied, and there are exactly enough values already

saved and ready to be applied in the closure, then simply feed those values as the

arguments to the function, reducing the function body to a value, and return that.

2. If zero arguments are supplied, and there are not enough saved values in the

closure, return the same closure.
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3. If at least one argument is supplied, and there are not enough saved values in the

closure, recursively call into applyFn, taking the first argument from the list and

appending it to the list of saved values. Either the argument list will run out before

the function is saturated (resulting in case 2), or the function will eventually be

saturated (resulting in case 1 or 4).

4. If at least one argument is supplied, and there are exactly enough saved values

already in the closure, then we evaluate the closure (which must, if the program

is well-typed, result in another closure), then recursively call applyFnwith the

new closure and the same argument list.

applyCn handles applications of arguments to constructors. The first rule is if exactly

enough arguments are applied to the constructor application; in that case, a constructor

containing those values is built and returned. The second handles the case where

fewer values were supplied than expected (partially saturating a constructor); in this

case, a closure is returned to capture the values already supplied, and when additional

values are applied, it will invoke applyCn again to check if the constructor has all fields

necessary to be built. We note that this appears to be dynamically creating syntax

(the rule indicates placing a let instruction into the created closure), but as every

constructor has a finite number of fields, these functions are all known statically.

applyPrim handles evaluation of primitive operations. The first case is invoked

when the correct arguments have been supplied for that particular operation, and

simply evaluates the operation according to the rule for 32-bit modular arithmetic,

returning the answer. Similar to applyCn, we must account for the case where the

function did not receive enough arguments; as there, we create a new closure to capture

the arguments supplied, and the operation can be evaluated once all arguments are

received (the second case).
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The ρ(arg) = ... helper function is for convenience, simply stating that if arg is an

integer, return that value; otherwise, it must be a name mapped to some value in the

environment, in which case that value should be returned.

2.6 Verification

We separate the verification of the embedded ICD application into three parts:

verification of the correctness of the ICD coroutine, a timing analysis to show that the

assembly meets timing requirements in the worst case, and a proof of non-interference

between the trusted ICD coroutine and untrusted code outside of it.

2.6.1 Correctness

We first implement a high-level version of the application’s critical algorithms (the

ECG filters and ATP procedure) in Gallina, the specification language of the Coq

theorem prover [73], using this version as our specification of functional correctness.

This specification operates on streams — a datatype that represents an infinite list —

by taking a stream as input and transforming it into an output stream. By sticking to a

high-level, abstract specification, we can be more confident that we have specified the

algorithm correctly. An ICD implementation cannot operate on streams, as all data is

not immediately available; instead, it takes a single value, yields a single value, and

then repeats the process.

The form of the correctness proof is by refinement: first, we create a Coq imple-

mentation of the ICD algorithm that is “lower-level” than the Coq specification. This

lower-level implementation operates on machine values rather than streams, isolates

function applications to let expressions, and avoids the use of “if-then-else” expressions,

among other trivially-resolved differences. We then create an extractor that converts
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Figure 2.7: Extraction of verified application components, summarized for a small
excerpt. (a) The high-level Coq specification is written to operate on Streams (infinite
lists); values are pulled from the front of the stream. (b) An intermediate version
is written in Coq which operates on integers instead of streams, and unfolds nested
operations so each function call and arithmetic operation takes one line. This intermedi-
ate version is proven equivalent in Coq to the high-level specification — meaning that
repeated recursive application of (b) will always output the same sequence of values as
(a). (c) A simple extractor just replaces the keywords in (b) to produce valid assembly
code that can run on Zarf.
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this lower-level Coq code directly into executable Zarf functional assembly code (see

Figure 2.7). If, for all possible input streams, we can prove that the output stream

produced by the high-level Coq specification is the same sequence of values produced

by the lower-level implementation, we can conclude that the program we run on Zarf

is faithful to the high-level Coq specification. This proof of equivalence between the

two Coq implementations is done by induction and coinduction over the program,

showing that if output has matched up to point N, and the computation of value N is

equivalent, then value N + 1 will be equivalent as well. As compared to extracting for

an imperative architecture, we avoid needing to compile functional operations to an

imperative ISA and do not require a large software runtime — or any software runtime

at all. The translation simply replaces Coq keywords with Zarf assembly keywords,

which is possible because the low-level Coq specification is in the A-normal form that

Zarf requires. For example, the Coq keyword CoFixpoint would be textually replaced

with fun, match replaced with case, etc.

We begin constructing our proof by first defining the relevant datatypes and expres-

sions of the ISA as inductively defined mathematical objects:

Inductive data : Set :=

| local : nat -> data

| arg : nat -> data

| caseValue : data

| caseField : nat -> data

| literal : Z -> data

| function : string -> data

| functionApplication : string -> list data -> data.

Inductive zarf_inst : Set :=

| apply' : data -> list data -> zarf_inst
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| case : data -> list alt -> zarf_inst

| ret : data -> zarf_inst

with alt : Set :=

| literalAlt : Z -> list zarf_inst -> alt

| constructorAlt : string -> list zarf_inst -> alt.

Inductive zarf_table : Set :=

| function_table : string -> nat -> list zarf_inst -> zarf_table

| constructor_table : string -> nat -> zarf_table.

We’re then able to define a small interpreter that executes the instruction semantics

(several constructors have been omitted for brevity and clarity of presentation):

Inductive zarf_run_function' : string -> list data -> list data -> data ->

list zarf_inst -> data -> Prop :=

| H_apply' x res ys zs (args:list data) f locals caseVal :

zarf_run_function' f args (locals ++ execApply x ys args locals caseVal) caseVal

zs res -> zarf_run_function' f args locals caseVal (apply' x ys :: zs) res

...

| H_matchesLiteral xrep z zs alts d res (l:list zarf_inst) f args locals caseVal x :

getData x args locals caseVal = Some xrep ->

matchesCase xrep (literalAlt d l) = true ->

zarf_run_function' f args locals xrep l res ->

zarf_run_function' f args locals caseVal

(case x (literalAlt d l :: z :: alts) :: zs) res

| H_ret x args locals caseVal f xrep zs : getData x args locals caseVal = Some xrep

-> zarf_run_function' f args locals caseVal (ret x :: zs) xrep .

Inductive zarf_run' (t : zarf_table) (args : list data) : data -> Prop :=

| Run_function f arity insts res : t = function_table f arity insts ->

zarf_run_function' f args [] (function "error") insts res ->

zarf_run' t args res.
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The zarf_run_function’ interpreter is made up of several cases, each of which

correspond to rules in the big-step semantics defined in Figure 2.5. For example, the

first case, H_apply’, defines what function application means. It says that if we add

a thunk to our local environment that is the result of executing the apply operation

(locals + execApply x ys args locals caseVal), and then execute the rest of the

instructions zs, we have successfully executed an apply statement followed by the rest

of the instructions zs.

We declare several axioms asserting the correctness of the ISA’s built-in functions and

their equivalence to built-in Coq operations. These built-in functions (like add, multiply,

etc., labelled PrimOp in Figure 2.2) are ultimately the base operations employed by all

user-defined functions, and we reference them during the proof of correctness of the

higher-level ECG algorithms later on. We also define a few axioms related to list and

pair construction, whose correspondence to the user-made Zarf function equivalents

are trivial. Here are a few assorted examples:

Axiom cons_rep : forall l' A (x':A) xs', l' == x' :: xs' -> exists x xs,

l' = (functionApplication "cons" [x; xs]) /\ x == x' /\ xs == xs'.

Axiom snd_same : forall (A B : Type) x (x' : A*B), x == x' ->

functionApplication "snd" [x] == snd x'.

Axiom add_same : forall x y x' y', x == x' -> y == y' -> x + y ==

functionApplication "add" [x'; y'].

We can then begin defining and proving things about non-builtin functions, like

append, reverse, index, and variousmatrixmultiplication operations. Here’s an example

of defining the simplest user-defined function, id, which is used often in Zarf assembly

for assigning a constant numeric value to a variable (because let expressions purely

operate over function identifiers (see Figure 2.2)). Proof bodies are omitted for brevity:

Definition zarf_id : zarf_table :=
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function_table "id" 1 [ret (arg 0)].

Axiom id_eta : forall x res, zarf_run' zarf_id [x] res ->

functionApplication "id" [x] = res.

Theorem equivalence_id :

forall A (x:A) x', x == x' ->

exists res, zarf_run' zarf_id [x'] res /\ res == x.

Lemma id_same :

forall (A : Type) x (x' : A), x == x' ->

functionApplication "id" [x] = x.

We then proceed to define several ECG helper functions, like the low pass filter, at

both a high-level stream-based abstraction and the lower-level implementation which

operates on machine values, and verify their equivalence (and thus the correctness of

the machine’s implementation of the specification):

(* Define Zarf implementation of the low pass filter as a series of Zarf instr. *)

Definition zarf_lpf : zarf_table :=

function_table "lpf" 0 [ apply' (function "lpf_rec") ...<arguments>...].

Definition zarf_lpf_rec : zarf_table :=

function_table "lpf_rec" 13 [

apply' (function "mult") [arg 1; literal 2];

...

apply' (function "tuple2") [local 7; local 6];

ret (local 8)

].

(* Define the high-level Coq stream-based specification of the low pass filter *)

CoFixpoint low_pass_filter_rec (xs: Stream Z) (ys: list Z) : (Stream Z) := ...
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(* Declare that the result of the running the "lpf_rec" Zarf function

is the same that results from running the low-pass filter function

through our Coq-defined Zarf interpreter *)

Axiom lpf_rec_eta : forall xs' res, zarf_run' zarf_lpf_rec xs' res ->

functionApplication "lpf_rec" xs' = res.

(* Define the non-stream-based LPF function *)

CoFixpoint low_pass_filter_rec2

(y2 y1 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0: Z) : Tuple2 Z :=

let y1m2 := Z.mul 2 y1 in

let x5m2 := Z.mul 2 x5 in

let t0 := Z.sub y1m2 y2 in

...

(* Prove the two implementations are equivalent *)

Theorem same_low_pass_filter_rec_and_rec2 :

forall xs ret1 ret2

y2 y1 x10' x9' x8' x7' x6' x5' x4' x3' x2' x1' x0',

(forall i, i >= 0 -> i <= 10 -> Str_nth i xs =

nth i [x10';x9';x8';x7';x6';x5';x4';x3';x2';x1';x0'] 0%Z)%nat ->

low_pass_filter_rec xs [y2;y1] = ret1 ->

low_pass_filter_rec2 y2 y1 x10' x9' x8' x7' x6' x5' x4' x3' x2' x1' x0' = ret2

-> StreamTuple2Same 10 xs ret1 ret2.

...

After we’ve proven the same_low_pass_filter_rec_and_rec2 theorem, we can

convert the low-level low pass filter implementation directly into Zarf assembly. In this

example, the assembly version of low_pass_filter_rec2would look like:

fun lpf_rec y2 y1 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 =

let y1mult2 = mult y1 2 in
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let x5mult2 = mult x5 2 in

let t0 = sub y1mult2 y2 in

...

The preceding snippets of code have been just a sample of the entire set of proofs

we wrote. The full proofs of correctness of the assembly-level critical ECG and ATP

functions take under 2,500 lines of Coq. The implementations are converted line-for-line

into Zarf assembly code, which is combined with assembly for the microkernel and

other coroutines.

In total, the Trusted Code Base for the correctness proof includes: the hardware, the

Coq proof assistant, and the small extractor that converts the low-level Coq code into

Zarf functional assembly code. All other code is untrusted and may be incorrect, and

the proof will still hold. The high-level ISA and clearly-defined semantics make this

very small TCB possible, allowing the exclusion of language runtimes, compilers, and

associated tooling that is frequently present in the TCB in verification efforts.

2.6.2 Timing

With a knowledge of how the Zarf hardware executes each instruction, we create

worst-case timing bounds for each operation. In general, in a functional setting, un-

bounded recursion makes it impossible to statically predict execution time of routines.

Though our application uses infinite recursion to loop indefinitely, the goal is to show

that each iteration of the loop meets the real-time deadline; within that loop, each

coroutine is executed only once, and no functions call into themselves. This allows

us to compute a total worst-case execution time for the sum of all the instructions by

extracting the worst-case route through the hardware state machine to execute each

possible operation. For example, applying two arguments to a primitive ALU function
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and evaluating it has a maximum runtime of 30 cycles — this includes the overhead of

constructing an object in memory for the call, performing a function call, fetching the

values of the operands, performing the operation, marking the reference as “evaluated”

and saving the result, etc. In an average case, only a fraction of the possible overhead

will actually be invoked (see Section 2.7 for CPI averages).

Hardware garbage collection is a complicating factor on timing. GC can be config-

ured to run at specific intervals or when memory usage reaches a certain limit; for our

application, to guarantee real-time execution, the microkernel calls a hardware function

to invoke the garbage collector once each iteration. To reason about how long the

garbage collection takes, we bound the worst-case memory usage of a single iteration

of the application loop. The hardware implements a semispace-based trace collector, so

collection time is based on the live set, not how much memory was used in all. For the

trace-collector state machine, each live object takes N+4 cycles to copy (for N memory

words in the object), and it takes 2 cycles to check a reference to see if it’s already been

collected. We bound the worst-case by conservatively assuming that all the memory

that is allocated for one loop through the application might be simultaneously live at

collection time, and that every argument in each function object may be a reference

which the collector will have to spend 2 cycles checking.

From the static analysis, we determine that the worst execution of the entire loop

is 4,686 cycles, not including garbage collection. Garbage collection is bounded by a

worst-case of 4,379 cycles, making a total of 9,065 cycles to run one iteration of system—

or 181.3 µs on our FPGA-synthesized prototype running at 50 MHz, falling well-within

the real-time deadline of 5 ms.
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2.6.3 Non-Interference

Because the ICD coroutine has been proven correct (Section 2.6.1), we treat its output

as trusted. This output must then travel through the rest of the cooperative microkernel

until it reaches the outside world via the I/O coroutine’s putint primitive. In order to

guarantee the integrity of this data (meaning it is never corrupted nor influenced by

less-trusted data), we rely on a proof of non-interference. Non-interference means that

“values of variables at a given security level ℓ ∈ L can only influence variables at any

security level that is greater than or equal to ℓ in the security latticeL” [74]. In a standard

security lattice, L (low-security) ⊑ H (high-security), meaning that high-security data

does not flow to (or affect) low-security output. In our application, however, we are

concerned with integrity; our lattice is composed of two labels, T (trusted) and U

(untrusted), organized such that T ⊑ U. Therefore, our integrity non-interference

property is that untrusted values cannot affect trusted values [16].

To prove this about Zarf, we create a simple integrity type system that provides a set

of typing rules to determine and verify the integrity type of each expression, function,

and constructor in a program. After providing trust-level annotations in a few places

and constraining the normal Zarf semantics slightly to make type-checking much easier,

we can run a type-checker over the resulting Zarf code to know whether it maintains

data integrity. We extend the original Zarf syntax to allow for these type annotations,

as follows:

ℓ, pc ∈ LabelF T | U

τ ∈ TypeF numℓ | (cn, τ⃗) | (⃗τ→ τ)

func ∈ FunctionF fun fn x1 :τ1, . . . , xn :τn :τ = e

cons ∈ ConstructorF con cn x1 :τ1, . . . , xn :τn
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Specifically, following the spirit of Abadi et al. [11] and Simonet [75], types are

inductively defined as either labeled numbers, or functions and constructors composed

of other types. Our proof of soundness on this type system follows the approach done

in work by Volpano et al. [12]. We show that if an expression e has some specific type

τ and evaluates to some value v, then changing any value whose type is less-trusted

than e’s type results in e evaluating to the same value v; thus, we show that arbitrarily

changing untrusted data cannot affect trusted data. We prove soundness case-wise over

the three types of expressions in our language, combining our evaluation semantics

with our security typing rules.

Integrity Type System

The integrity type system is found in Figure 2.8. Our integrity lattice is composed of

two elements, T and U (trusted and untrusted, respectively), such that T < U (opposite

of a normal security lattice). We extended the Zarf ISA by requiring function and

constructor type annotations. Constructors, which previously were untyped, are now

singleton types: each constructor declaration defines a type, but that constructor is

the sole inhabitor of the type. This restriction eliminates case expressions as sources

of control flow when casing on a constructor type (since we know statically that the

case expression’s scrutinee will be a single unique value, and therefore also statically

know which branch will be taken); note that this also eliminates the consideration of

the else branch in a case expression on a constructor type. Instead, case expressions in

this lightly-typed Zarf are solely for binding a constructor’s internal values to variables

(via deconstruction). Though this causes a loss in expressive power in the general case

(constructors must be singleton types), our microkernel was designed without the need

for this type of control flow.

case expressions whose scrutinee is a number, however, still allow for control flow
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ℓ, pc ∈ LabelF T | U τ ∈ TypeF numℓ | (cn, τ⃗) | (τ⃗→ τ)
Γ ∈ Env = Identifier → Type

Γ[i1 7→ τ1, . . . , in 7→ τn] ⊢ e :τ
Γ ⊢ (fun fn i1 :τ1, . . . , in :τn :τ = e) :(τ1, . . . , τn)→ τ

(func)

τ1 = Γ(id) −→τ2 = Γ(
−−→arg) τ3 = applyType(τ1,

−→τ2) Γ[x 7→ τ3] ⊢ e :τ4

Γ ⊢ let x = id −−→arg in e :τ4
(let)

(cn, τ⃗1) = Γ(arg) (cn x⃗ ⇒ e1) ∈
−→
br Γ[x⃗ 7→ τ⃗1] ⊢ e1 :τ2

Γ ⊢ case arg of
−→
br else e0 :τ2

(case-cons)

numℓ = Γ(arg) Γ ⊢ e1 :τ1 . . . Γ ⊢ en :τn Γ ⊢ e0 :τ0

τ = (τ0 ⊔ τ1 ⊔ . . . ⊔ τn) • ℓ
Γ ⊢ case arg of n1 ⇒ e1 . . . nn ⇒ en else e0 :τ (case-lit)

τ = Γ(arg)
Γ ⊢ result arg :τ (result)

Γ[x 7→ numT] ⊢ e :τ
Γ ⊢ let x = getint n in e :τ (getint)

numℓ = Γ(arg) Γ[x 7→ numℓ] ⊢ e :τ
Γ ⊢ let x = putint n arg in e :τ (putint)

Figure 2.8: Integrity typing rules. A type is inductively defined as either a labelled
number, a singleton constructor, or a function constructed of these types. The type envi-
ronment maps variables, function, and constructor names to types. Since all functions
are annotated with their types, type checking proceeds by ensuring that the return type
of a function is the same as the type deduced by checking the function’s body expression
with the function’s parameter types added to the type environment. ⊔ denotes the join
of two types, and • denotes the joining of a type’s integrity label with another.
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applyType((τ⃗1 → τ),τ⃗2) =
τ if |⃗τ1| = 0 and |⃗τ2| = 0
(τ⃗1 → τ) if |⃗τ1| > 0 and |⃗τ2| = 0
applyType(τ⃗3 → τ,τ⃗4) if τ⃗1 = τ1 :: τ⃗3, τ⃗2 = τ2 :: τ⃗4, and τ2 ≤ τ1

applyType(τ⃗3 → τ4,τ⃗2) if |⃗τ1| = 0, |⃗τ2| > 0, and τ = (τ⃗3 → τ4)

Γ(n) = numpc Γ(id ) =


(τ⃗→ (cn, τ⃗)) if id = cn and con cn x⃗ : τ⃗ ∈

−−−→
decl

(τ⃗→ τ) if id = fn and fun fn x⃗ : τ⃗ :τ = e ∈
−−−→
decl

τ if id = x and (x 7→ τ) ∈ Γ

Figure 2.9: Integrity typing rules helpers. Γ is a helper function that gets the type of
an argument, and applyType applies a function type to argument types. Applying a
helper function that takes one argument to a list of arguments is shorthand for mapping
that function over the list.

numℓ ⊔ numℓ
′

= numℓ⊔ℓ
′

(cn, τ⃗) ⊔ (cn, τ⃗) = (cn, τ⃗)

(τ⃗→ τ) ⊔ (τ⃗′ → τ′) = (τ⃗ ⊔ τ⃗′ → τ ⊔ τ′)

numℓ • ℓ′ = numℓ⊔ℓ
′

Figure 2.10: Joining two types. The • operator is used to join a type’s label with another
label; if the type that the label is being joined with is not a num, the label will be joined
with each of the type’s inner types until a base num is reached. Joining two lists of
types is equal to the pairwise join of their elements. Constructor join is trivial because
constructors are singletons whose type never changes, and only equal constructors can
be compared.
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ℓ ⊑ ℓ′

numℓ ≤ numℓ
′ (num)

τ⃗′ ≤ τ⃗ τ ≤ τ′

(τ⃗→ τ) ≤ (τ⃗′ → τ′)
(func)

(cn, τ⃗) ≤ (cn, τ⃗)
(cons) τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(tran)

Figure 2.11: Subtyping rules. One type is a subtype of another if their base types are
equal and, in the case of the base num type, the first’s label is lower in the integrity
lattice than the other. A list is a subtype of another if pairwise each element of the first
is a subtype of the corresponding element in the other list.

(since the value of an num is not known ahead of time); therefore, the type of this form

of case expression is the join of all of its branch types. The type of the scrutinee, which

is significant in a security analysis, is here irrelevant — there are no implicit flows for

integrity. Because we do not use union types, another small restriction we enforce is that

each branch in a case expression must result in the same base type (i.e. all must either

type-check to a num, (cn, τ⃗), or τ⃗ → τ), such that we may join them together properly

(see Figure 2.10).

The integrity label associated with a num depends on the integrity level of the code

that created it: untrusted code can only create numbers of type numU, while trusted

code can create trusted numbers (which can be treated as untrusted numbers via

subtyping; see Figure 2.11). Primitive operations (add, subtract, etc.) are treated as

named functions contained within the set of declarations −−−→decl. The type of primitive

operators is dependent on the trust level of the caller: for example, the type of add is

numℓ1 → numℓ2 → numℓ1⊔ℓ2⊔pc, where pc represents the trust level of the current program

location (we assume its value can be tracked and changed outside of the type system

proper). This all implies that untrusted code cannot use the primitive operations to

create any type of trusted value (regardless of the types of the numbers an untrusted

caller uses), thus restricting untrusted code’s ability to obtain trusted values to (1) the
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getint function (which in our application is data straight from the heart monitor) and

(2) by calling trusted functions which return trusted values.

This system will verify integrity for a value with singular endpoints — i.e., for the

code being checked, it is received at one point and sent at one point. More complex

annotations and treatment of values, like an arbitrary number of mutually untrusted but

critical values passing through an arbitrary number of trusted and untrusted regions,

can be guaranteed with this type-system via piecewise checking. By guaranteeing each

link in the chain one-at-a-time, the integrity of the chain is verified.

The soundness proof of the integrity type system proceeds by cases on the three

forms of expressions.

Lemma 1 (Case Expression Soundness). If ∀x e0 e1 arg1 arg2 τ0 τ1 cn1 τ⃗1 v1 v2 ρ Γ, where

1. e0 = (case arg1 of
−→
br else e1)

2. Γ ⊢ e0 :τ0 ∧ ρ ⊢ e0 ⇓ v1 ∧ ρ(x) = arg1

3. Γ ⊢ arg2 :τ1 ∧ τ1 > τ0 ∧ ρ ⊢ arg2 ⇓ v2

then ρ[x 7→ v2] ⊢ e0 ⇓ v1.

Proof. 1. If Γ ⊢ arg1 : numℓ, then ∀n e2 . . . em , e0 = (case n of n2 ⇒ e2 . . . nm ⇒

em else e1), and either ℓ = T or ℓ = U. We show that regardless of arg2’s level when

it is of type num, it cannot be changed and therefore e0’s value doesn’t change.

(a) If ∃ℓ1 ∈ τ0 s.t. ℓ1 = T, then by typing rule case-lit and the rule for join, n’s

integrity label is T. Therefore, arg1 cannot both equal n and be arbitrarily

changed to some expression arg2 because it is not an expression whose type

label is less trusted than the type of the entire expression (i.e. numT ̸≥ τ0).

Thus we cannot replace arg1 with arg2, so in this case the value of e0 remains
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the same, as desired. Since e1 through em+1 are expressions whose soundness

with respect to the type system can be considered separately through Lemmas

1, 2, and 3, we do not consider them here.

(b) If ∃ℓ1 ∈ τ0 s.t. ℓ1 = U, then by our definition of the T−U integrity lattice, there

can be no values whose type is greater than τ0 (arg1 included) that we can

change. Therefore, e0 remains unchanged, satisfying our conclusion.

2. If Γ ⊢ arg1 : (cn, τ⃗1), then ∀cn3 . . . cnn x⃗3 . . . x⃗n e3 . . . en,

e0 = (case (cn, τ⃗1) of cn3 x⃗3 ⇒ e3 . . . cnn x⃗n ⇒ en else e1).

• We know by the operational semantics (restricted to accommodate this type

system, with singleton constructor types) that which branch we case on is

determined entirely by the constructor that arg1 evaluates to, and not the val-

ues contained within that constructor. Therefore, changing the expressions

within any constructor will result in the same branch being taken, such that

e0 evaluates to the branch’s right-hand-side expression. Therefore, we cannot

choose to replace arg1 with another arbitrary arg2 when Γ ⊢ arg1 : (cn, τ⃗1).

• Let (cn3 x⃗3 ⇒ e3) be the matching branch (where cn = cn3). Based on the

previous bullet point, we know that changing the expressions of any other

branches will not change the value of the entire case expression, so we focus

on this particular branch as an example. We must show that ∀τ3,∃x3 ∈

x⃗3 s.t. Γ ⊢ x3 :τ3 > τ0, changing the value that x3 maps to in ρ does not change

the value that e3 evaluates to; that is, ρ[x3 7→ v3] : e3 ⇓ v, where ρ(arg2) = v3.

Since e3 is an expression, its soundness is either covered by Lemma 1 (by

induction) or Lemmas 2 or 3.

□
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Lemma 2 (Result Expression Soundness). If ∀x e0 arg1 arg2 τ1 τ2 v1 ρ Γ, where

1. e0 = (result arg1) ∧ ρ ⊢ e0 ⇓ v1

2. Γ ⊢ arg1 :τ1 ∧ arg2 = ρ(arg1)

3. ρ ⊢ arg2 :τ2 ∧ τ2 > τ1 ∧ ρ ⊢ arg2 ⇓ v2

then ρ[(x 7→ v2)] ⊢ e0 ⇓ v1

Proof. The result expression is used for wrapping a value into a single expression con-

taining that value. Therefore, changing the value of arg1 to arg2 would change the

resultant value v1 that e0 is given, contradicting our result. As another point, by the

typing rule result, result’s type is precisely the type of arg1, meaning there are no values

within e0 to change that would not cause us to violate (3) above. Therefore, the value

of arg1 must equal the value of arg2 such that value of e0 cannot change. □

Lemma 3 (Let Expression Soundness). If ∀e0 e1 x id arg1 arg2
−−−→arg3

−−→arg4

τ1 τ2 v1 v2 v3 v⃗3 v⃗4 v5 ρ Γ, where

1. e0 = (let x = id −−→arg3 in e1)

2. Γ ⊢ e0 :τ1 ∧ ρ ⊢ e0 ⇓ v1

3. Γ ⊢ id : τ⃗→ τ

4. ρ(−−→arg3) = v⃗3

5. Γ(arg1) = τ2 ∧ τ2 > τ1

6. arg0 ∈
−−→arg3 ∧

−−→arg4 =
−−→arg3 − arg0 + arg1

7. ρ(−−→arg4) = v⃗4
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8. (id ∈ −−−→cons ∧ applyCn(id,v⃗3) = v2) ∨ (applyFn(id,v⃗3,ρ) = v2)

9. (id ∈ −−−→cons ∧ applyCn(id,v⃗4) = v3) ∨ (applyFn(id,v⃗4,ρ) = v3)

10. v2 = v3

11. ρ[x 7→ v3] ⊢ e1 ⇓ v5

then v1 = v5.

Proof. By cases on id:

1. If id is a primitive function (add, multiply, etc.), then v2 , v3 ⇐⇒
−−→arg3 ,

−−→arg4. By

the typing rule of primitives, the type τ that the function returns is the least upper

bound of all of its arguments, including arg1, meaning by definition, both the

value and type of the primitive operation are entirely dependent on all arguments.

Therefore, there cannot exist an arg2 that allows us to substitute it for arg1 whose

type is less trusted than τwithout changing the entire value v1.

2. If id is a constructor, then id has the type−→τ → (cn, τ⃗). id’s return type is determined

statically and does not change throughout program execution. Therefore, there

does not exist a subexpression in −−−→arg3, or more generally, in e0, that can changed

without changing the type of the constructor, which would contradict our having

the same values after evaluation.

3. If id is a non-recursive function composed solely of case and result expressions

and applications of primitive functions and constructors used in let expressions,

then by (1), (2), Lemmas 1 and 2 and induction on Lemma 3, we know id must

be sound. By extension, if id calls a function that fulfills these requirements, one

can unfold the called function’s contents in order to see that the resultant value v2

satisfies this case.
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4. If id is a recursive function or calls a function which calls id (i.e. mutual recursion),

it is possible that the function call never terminates and therefore never results

in a single value. The soundness of e0 must then be guaranteed via induction on

possible expressions, proven in the previous lemmas. We know statically that the

type of id is of the form τ⃗ → τ, so we are guaranteed via simplification rules in

the apply helper functions that types of −−→arg3 must be equal to or subtypes of τ⃗, or

otherwise our operational semantics would get stuck. By induction, any recursive

calls made in e1 must also satisfy this lemma, meaning that the actual arguments
−−→arg3 are used properly, otherwise e0 wouldn’t type check to type τ1 by getting

stuck.

By proving that v2’s value does not change when less-trusted values change, we can

safely continue with the evaluation of e1, which will be a case, result, or let, all of which

are handled in Lemma 1, Lemma 2, and Lemma 3, respectively. □

Theorem 1 (Integrity Type System Soundness). Our integrity type system is sound if, given

some expression e of type τ which evaluates to some value v, we can show that we can arbitrarily

change any (or all) expressions in e which are less trusted than τ so that e still evaluates to v;

i.e., untrusted data does not affect trusted data.

Formally, if ∀e1 e2 e3 e4 τ1 τ2 τ3 v ρ Γ, where

1. ρ ⊢ e1 ⇓ v ∧ Γ ⊢ e1 :τ1

2. e2 ∈ subexprs(e1) ∧ Γ ⊢ e2 :τ2 ∧ τ2 > τ1

3. Γ ⊢ e3 :τ3 ∧ τ3 ≥ τ2

then ρ ⊢ e1[e3/e2] ⇓ v
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Proof. There are just three types of expressions: let, case, and result. By Lemma 1, we

show that case expressions (the vehicle for control-flow) are sound. By Lemma 2,

we show that result expressions are sound. Likewise, by Lemma 3, we show that let

expressions (the vehicle for function application) are sound. Thus, we have exhaus-

tively shown soundness of all expressions. Furthermore, we can see that when these

expressions are composed according to the abstract syntax, with the additional typing

annotations and a few restrictions, any well-typed Zarf program has the property of

non-interference with respect to integrity, even while using a simplistic type system

such as that explained here. □

2.6.4 Programmer Responsibility

We have demonstrated that there are varying degrees of responsibility a Zarf pro-

grammer can take when writing their application, each involving greater effort. The

first is doing the minimum: the programmer writes their program in Zarf assembly.

A major advantage of Zarf is that the application automatically gains the benefits of

memory and control-flow safety inherent in the ISA, properties that other ISAs don’t

easily offer. Anywell-formed application that runs on Zarf gets these properties without

any additional programmer involvement.

The second degree of responsibility that can be taken is writing the application’s

specification in Coq and automatically lowering it to Zarf to prove its correctness. This

approach involves a non-trivial amount of proof-writing, but since the ISA resembles

the language of verification very closely, we argue that the amount of work involved

relative to doing so over other imperative ISAs is significantly less. Since high-level

specification and verification of critical applications is common practice, this level of

programmer responsibility is not usual. Gladly, however, any future proof efforts might
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not need to be entirely application-specific. Given the exercise of proving the correctness

of the Zarf implementation of the ICD algorithm, we now have a set of theorems and

proofs showing the equivalence between common user-made Zarf functions and Coq

versions. It is conceivable that verification in Coq of future Zarf applications could

reuse this underlying work.

The third degree of responsibility involves proving additional properties over the

system, beyond the aforementioned safety and correctness. We demonstrated this by

laying a security type system over the ISA, somewhat restricting it (like all type systems

are wont to do) in exchange for the added property of non-interference. Because

the process of writing a type system and checker are sufficiently general, we can see

additional type systems or analyses being made over the base Zarf ISA relatively easily.

Finally, there is the issue of determining which parts of an application should go

into each hardware execution realm. Zarf has two execution realms due in part to the

assumption that users might want to include legacy or high performance, non-critical

code; this code can run on the imperative ISA. However, any activity providing critical

functionality for safe operation should happen in the functional processor. Veridrone

[76] is an example of another project beyond our ICD that might benefit from this

approach; that project uses both a lower-performance core safety control system and

a higher-performance unverified version that is more energy-efficient and allows for

smoother flying.

2.7 Evaluation

To validate our designs, we download the Zarf hardware specification onto a Xil-

inx Artix-7 FGPA and run our sample application. For a comparison, we also run a

completely unverified C version of the application on a Xilinx Microblaze on the same
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Resource Zarf MicroBlaze
LUTs 4,337 1,840
FFs 2,779 1,556

Cycle Time 20ns (50 MHz) 10ns (100 MHz)

Table 2.1: Resource usage of Zarf and basic MicroBlaze (3-stage pipeline), the two layers
of Zarf, when synthesized for a Xilinx Artix-7 FPGA. In total, the logic of Zarf uses
29,980 gates.

FPGA. Hardware synthesis results are summarized in Table 2.1.

The hardware description of Zarf is more complex than a simple embedded CPU,

with 66 total states of control logic (4 deal with program loading, 15 with function

application, 18 with function evaluation, and 29 with garbage collection). In all, the

combinational logic takes 29,980 primitive gates (roughly the size of a MIPS R3000), or

4,337 LUTs when synthesized for an Artix-7 FPGA (less than 7% of the available logic

resources). Estimated on 130nm, the combinational logic takes up .274 mm2. Though

larger than very simple embedded CPUs, Zarf is still quite a bit smaller than many

common embedded microcontrollers.

From a dynamic trace of several million cycles, the ICD application exhibited the

following average CPI for each instruction type. Let instructions had an average of

5.16 arguments and took on average 10.36 cycles. Case instructions averaged at 10.59

cycles; each branch head in a case takes exactly 1 cycle to check if the branch matches.

Results took 11.01 cycles on average. The total dynamic CPI across the trace was

7.46 (or 11.86 if garbage collection time is included). Approximately one third of the

dynamic instructions were branch heads.

The C version of the ICD application on the MicroBlaze takes fewer than one thou-

sand cycles for each iteration of the application. The analysis in section 2.6.2 discusses

the worst-case runtime of the Zarf application, which is around 9,000 cycles or 180

µs (though much faster in the typical case). This is in addition to a longer cycle time
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(see Table 2.1). When compared to the carefully optimized and tiny MicroBlaze, our

experimental prototype uses approximately twice the hardware resources, and the

application is around 20x slower in the worst case than Microblaze in the common

case — but is still over 25 times faster than it needs to be to meet the critical real-time

deadlines, all while adding invaluable guarantees about the correctness of the most

critical application components and assurance of non-interference between separate

functions.

2.8 Conclusion

As computing continues to automate and improve the control of life-critical systems,

new techniques which ease the development of formally trustworthy systems are sorely

needed. The systemapproach demonstrated in thiswork shows that deep and composable

reasoning directly onmachine instructions is possible when the architecture is amenable

to such reasoning. Our prototype implementation of this concept uses Zarf to control the

operation of critical components in a way that allows assembly-level verified versions of

critical code to operate safely in close partnership withmore traditional and less-verified

system components without the need to include run-times and compilers in the TCB.

We take a holistic approach to the evaluation of this idea, not only demonstrating its

practicality through an FPGA-implemented prototype, but furthermore showing the

successful application of three different forms of static analysis at the assembly level of

Zarf.

As we move to increasingly diverse systems on chip, heterogeneity in semantic

complexity is an interesting new dimension to consider. A very small core supporting

highly critical workloads might help ameliorate critical bugs, vulnerabilities, and/or

excessive high-assurance costs. A core executing the Zarf ISA would take up roughly
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0.002% of a modern SoC. Our hope is that this work will begin a broader discussion

about the role of formal methods in computer architecture design and how it might be

embraced as a part, rather than an afterthought, of the design process.
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Chapter 3

Bouncer: Static Program Analysis in

Hardware

3.1 Introduction

The demand for more connectivity and richer interactions in everyday objects means

that everything from light bulbs to thermostats now contains general-purpose micro-

processors for carrying out fairly straightforward and low-performance tasks. Left

unanalyzed, these systems and their associated software stacks can be expected to hold

a seemingly endless collection of opportunities for attack. Static analysis provides pow-

erful tools to those wishing to understand or limit the set of behaviors some software

might exhibit. By facilitating sound reasoning over the set of all possible executions,

this type of analysis can identify important classes of behavior and prevent them from

ever happening. If embedded system developers simply never released software that

failed, such that those well-analyzed applications were the only things to ever execute

on platforms under our control, many of the bugs and vulnerabilities that plague our

life would be eliminated. Unfortunately, realizing this in practice has proven incredibly
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hard due to pressure to market, pressure to reduce cost, and the delayed and stochastic

cost associated with vulnerabilities and bugs.

While larger software companies might be more trusted to rigorously verify their

software releases, the embedded systems market has a long and heavy tail of providers

with a much wider distribution of expertise and resources at their disposal. When we

bring an embedded device into our home or business, how can we have confidence that

the software running there (which depends on chains of control well outside our ability

to observe) is “above the bar” for us? Seemingly innocuous issues, for example passing

a string instead of an integer, can open the door for an attacker to gain root privileges

and serve as a base for other attacks (exactly this happened already in a class of WiFi

routers [77]). Similar attacks targeting embedded devices and firmware updates have

succeeded on everything from printers [78] to thermostats [79].

The basic research question we ask in this paper is: is it possible to make forms

of static analysis an intrinsic part of executing on a microprocessor? In other words,

we examine a machine that will guarantee at the hardware level that any and all code

executing on it is bound to the constraints imposed by a given static program analysis.

This moves the decision to do a proper analysis away from those that push software

updates (who may be making decisions about updates many years removed from the

original purchase) to the decision to purchase and deploy a particular hardware device

itself.

Such a machine would reject any attempt to load it with code that fails to meet

the specified “bar,” independent of who wrote it, who signed it, how it was managed,

or where the software came from. The trust one could put in aspects of execution on

such a processor could be independent of measurement, attestation, or other active

third-party evaluation. By doing the checks in hardware, we can make them intrinsic to

the device’s functionality: the checks will be fully live right from power-up; the checks
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will require no dependency on other software on the system functioning correctly (zero

TCB); and if properly designed, they will be directly wired into the operation of the

system, making them provably impossible to bypass.

As this is the first approach to propose and evaluate fully-hardware implemented

static analysis there are two big open questions: a) is it even possible to do a useful

static analysis in hardware, and b) what would the costs of such an analysis be in terms

of time or area? We answer these questions through the hardware development of a

newmodule, the Binary Exclusion Unit (which we call “the bouncer” more informally),

capable of scanning and rejecting program binaries right as they are streamed onto the

device. Specifically, we make the following contributions:

• We introduce hardware static binary analysis and show that it can be implemented

in a way that can never be circumvented through some clever manipulation of

software (e.g. a compromised set of keys, a bug in the operating system, or a

change in the boot ordering).

• We describe a method of static analysis co-design where the checking algorithm

is modified to be more amenable to hardware implementation while maintaining

correctness and efficiency.

• We demonstrate that the analysis, in conjunction with the functional ISA, ensures

all executions are free of memory and type errors and have guaranteed control

flow integrity.

• We evaluate the functioning of the system with a complete RTL implementation

(synthesizable Verilog) of the checker and processor interoperatingwith gate-level

simulation.

• Finally, we show that the resulting system is efficient both in terms of hardware
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resources required and performance, and describe how program transformations

can make it even more so.

We elaborate on the motive of our work (Section 3.2), present our hardware static

analysis in the form of a new hardware/software co-designed type system and prove

its soundness (Section 3.3), outline the checking algorithm implementing the type

system (Section 3.4), and design type annotations that can be easily encoded into the

machine binary and provide a hardware implementation of the typechecker (Section

3.5). We prove the non-bypassability of the circuit in Section 3.6, something that would

be extremely difficult to achieve for a software solution. Next, we provide hardware

synthesis figures, evaluate update-time overhead, and show how to manage worst-case

examples (Section 3.7). Finally, we discuss related work (Section 3.8) and conclude.

3.2 Hardware Static Analysis

In building a static analysis hardware engine directly into an embedded micro-

controller, one of the big advantages of customization is that at the hardware level

we can see, either physically through inspection or through analysis at the gate or RTL level,

exactly how information is flowing through a system to introduce safety or security

mechanisms that are truly non-bypassable. No software can change the functioning of

the system at that level. However, doing static analysis at the level of machine code is

no easy task — even for software.

Fortunately, there are some great works to draw inspiration from. Previous work

has used types to aid in assembly-level analysis; specifically TAL [80] and TALx86 [81]

have created systems where source properties are preserved and represented in an

idealized assembly language (the former) or directly on a subset of x86 (the latter).

Working up the stack from assembly, other prior works attempt to prove properties
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and guarantee software safety at even higher levels of abstractions. We seek to take

these software ideas and find a way to make them intrinsic properties of the physical

hardware for embedded systems where needed.

In this work we draw upon the opportunity afforded by architectures that have

already been designed with ease of analysis in mind. Specifically, we leverage the Zarf

ISA, a purely functional, immutable, high-level ISA and hardware platform used for

binary reasoning, which is suitable for execution of the most critical portions of a system

[1]. At a high level, the Zarf ISA consists of three instructions: Let performs function

application and object allocation, applying arguments to a function and creating an

object that represents the result of the call. Case is used for both pattern-matching and

control flow. One cases on a variable, then gives a series of patterns as branch heads;

only the branch with the matching pattern is executed. Patterns can be constructors

(datatypes) or integer values, depending on what was cased on. Result is the return

instruction; it indicates what value is returned at the end of a function. Branches in

case statements are non-reconvergent, so each must end in a result instruction.

A big advantage of this ISA for static analysis is that it has a compact and precise

semantics. If we could could guarantee the physical machine would always execute

only according to these semantics (e.g. always respecting call/return behavior, using

the proper number of arguments from the stack, etc.) we would end up with a system

that has some very desirable properties. In Section 3.7 we show that these include

verifiable control flow integrity, type safety, memory safety, and others; e.g., ROP [82]

is impossible, programs never encounter type errors, and buffer overruns can never

happen.

Unfortunately, the semantics of any language govern the behavior of execution only

for “well-formed” programs. When we are talking about machine code, as opposed to

programming languages, things are a little trickier, because machines are expected to
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read instruction bits from memory and execute them faithfully as they arrive. As we

describe in more detail below, checking membership in the language of well-formed

Zarf programs is actually something that requires some sophistication and would be

difficult to do at run-time. Even though there are just three instructions, Zarf binaries

support casing, constructors, datatypes, functions, and other higher-level concepts as

first-class citizens in the architecture. Our goal is to correctly implement these checks

statically and show that the only binaries that can ever execute on this machine pass

this static analysis.

3.2.1 The Analysis Implemented

While one could, in theory, capture every possible deviation from the Zarf semantics

with a set of run-time checks in hardware, actually catching every possible thing that

can go wrong quickly grows in complexity. An advantage of static checking over

dynamic checks is that once the binaries are analyzed, no additional energy and time

costs are required during execution. For an embedded system that runs the same code

continuously, any small static cost is amortized rather quickly. As we will show later, in

fact the static analysis can actually be done in a single streaming pass over the executable.

However, just to see the scope of the problem it is useful to enumerate some of the

dynamic checks that would be required to achieve the same objective as our hardware

static analysis.

Table 3.1 lists ways that programs can fail and costs that are incurred if one were

to dynamically check for errors on the platform. There are 21 different ways for the

hardware to throw errors, the great majority of which require keeping some significant

bookkeeping to actually check. At the very least, we would need to keep extra infor-

mation on number of arguments, number of local variables, number of recently cased
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Possible failure: Meaning:
malformed instruction Bit sequence does not correspond to a valid instruction.
fetch out-of-bounds arg Accessing argument N when there are fewer than N arguments.
fetch out-of-bounds local Accessing local N when there are fewer than N locals allocated.
fetch out-of-bounds field Accessing field N when there are fewer than N fields in the

case’d constructor.
fetch invalid source Bit sequence does not correspond to a valid source.
apply arguments to literal Treating a literal value as a function and passing arguments to

it.
apply arguments to construc-
tor

Treating a saturated constructor as a function and passing ar-
guments to it.

applicationwith toomany args Passing more arguments than a function can handle, even if it
returns other functions.

application on invalid source Invalid source designation for function in application.
oversaturated error closure Passing arguments to an error closure.
oversaturated primitive Passingmore arguments than a primitive operation can handle.
passing non-literal into primi-
tive op

Passing an object (constructor or closure) into a primitive op-
eration.

case on undersaturated clo-
sure

Trying to branch on the result of a function that cannot be
evaluated.

unused arguments on stack Oversaturating a function and branching on the result when
not all arguments have been consumed.

matching a literal instead of a
pattern

Branching on a function that returns a constructor, but trying
to match an integer.

invalid skip on literal match Instruction says to skip N words on failed match, but that loca-
tion is not a branch head.

no else branch on literal match Incomplete case statement because of lack of else branch.
matching a pattern instead of
a literal

Branching on a function that returns an integer, but trying to
match a constructor.

incomplete constructor set in
case statement

Incomplete case statement because not all possible constructors
are present.

invalid skip on pattern match Instruction says to skip N words on a failed match, but that
location is not a branch head.

no else branch on pattern
match

Incomplete case statement because of lack of else branch.

Table 3.1: Summary of 21 conditions that require dynamic checks in the absence of static
type checking. With our approach, checking is achieved ahead of time, in a single pass
through the program; energy and time are not wasted with repeated error checking.
No information needs to be tracked at runtime, and the only runtime hardware check
is for out-of-memory errors. All of the listed errors are guaranteed by our type system
to not occur.
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constructor fields, and runtime tags on heap objects to distinguish between closures

and constructors — all of which the hardware would need to track at runtime. Crucially,

this information must be incorruptible and inaccessible to the software for the dynamic

checks to be sound. If software is able to access and corrupt this information, it com-

promises the integrity of the dynamic checks. In general, guaranteeing that the set of

dynamic checks are always occurring, i.e. not bypassed, can be very difficult. With a

hardware-implemented static analysis, we are able to formally prove that our checks

cannot be bypassed (outlined in Section 3.6). In addition to the hardware implementa-

tion overhead of these checks, reasoning about software behavior in the face of dynamic

checks becomes more difficult as well if error states are returned. Programmers that

wish to handle errors due to code that fails such checks are forced to reason about every

situation that can arise (e.g. what if this function encounters an oversaturated primitive,

or cases on an undersaturated closure, and so on.). Instead, by performing the checks

statically, all software components understand that any other component with which

they might interact on the system is subject to the same analysis as their own code.

3.2.2 The Bouncer Architecture

Given that we can develop a unit to actually perform the desired static analysis, a

big question is where it fits into the actual micro-controller design. Figure 3.1 shows

how a static analysis engine (the Binary Exclusion Unit) fits into an embedded system

at a high level: all incoming programs are vetted by the checker before being written

to program storage, ensuring that all code that the core executes conforms to the type

system’s proven high-level guarantees. During programming mode, as a binary image

is loaded into the core, the checker has write access to the program store and can use

data memory as a working space. The Binary Exclusion Unit can thus be used as a
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Figure 3.1: The Binary Exclusion Unit works as a gatekeeper, only allowing input
binary programs if they pass the static analysis. When in “Programming” mode, the
core is halted while the program is fed to the checker; if it passes, it is written to the
system instruction memory. The checker makes use of the core’s data memory, which
is otherwise unused during system programming. At run-time, the checker is disabled
and consumes no resources. Programs that pass static analysis are guaranteed to be
free of memory errors, type errors, and control flow vulnerabilities. The checker is
non-bypassable; all input binaries are subject to the inspection.

70



Bouncer: Static Program Analysis in Hardware Chapter 3

runtime guard, checking programs right before execution when they are loaded into

memory, or as a program-time guard, checking programs when they are placed into

program storage (flash, NVM, etc.).

Only once the programming mode is complete do the instruction and data memory

become visible. The upshot of catching errors this way is that this gives you feedback

at programming time, before a device is deployed, that the binary contains errors. It

further ensures that when reprogramming occurs in the field, malicious or malformed

code that exploits interactions outside of the ISA semantics will never be loaded.

In either case, checking works the same way: each word of the binary is examined

one at a time in a linear pass over the program as it is fed through the Binary Exclusion

Unit. It is trivial to verify that the BEU is the only unit given access to write to the

memory — the more interesting discussion, covered later, is the verification that the

only way though the BEU is via a static analysis.

3.3 Static Analysis Strategy

While many different static analysis approaches might be implemented in hardware

in the way we described in the sections above, to embody these ideas in a hardware

prototype we need a specific analysis specification and implementation. Here we draw

inspiration from TAL [80], and use types to clearly and completely specify allowed

behavior. By extending the Zarf ISA with types, passing a portion of that type informa-

tion along with the binary, and then performing the static analysis to check those types,

we know the program conforms to the allowed behaviors. This new type-extended Zarf

ISA is, unlike untyped Zarf, based on the polymorphic lambda calculus. Figure 3.2

describes the abstract syntax of the typed ISA; note that there are four types: integers,

functions, type variables, and datatypes (which are similar to algebraic datatypes found
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x ∈ Variable n ∈ Z fn, tn, cn ∈ Name ⊕ ∈ PrimOp
α ∈ GenericTypeVariable β ∈ RigidTypeVariable

P ∈ ProgramF
−−−→
data

−−−→
func

data ∈ DatatypeF data tn α⃗ = −−−→cons
cons ∈ ConstructorF con cn τ⃗

func ∈ FunctionF fun fn −−−→x : τ τ = e
e ∈ ExpressionF let | case | res

let ∈ LetF let x = n in e | let x = id −−→arg in e

case ∈ CaseF case x of
−→
br | case x of

−→
br else e

res ∈ ResultF result arg
br ∈ BranchF cn x⃗⇒ e | n⇒ e

id ∈ IdentifierF fn | cn | ⊕ | x
arg ∈ ArgumentF n | x

τ ∈ TypeF Int | dt | ft | T
dt ∈ DatatypeF tn τ⃗
ft ∈ FuncTypeF τ⃗→ τ

T ∈ TypeVarF α | β

Figure 3.2: Typed Zarf abstract syntax. An arrow over any metavariable signifies a
list of zero or more elements, except for a datatype’s constructor list, which must be
non-empty.
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Γ ∈ Env = Variable→ Type C ∈ ConstraintSet = P(Type × Type)

σ ∈ Substitution = TypeVar → Type b ∈ Bool = true + false

Figure 3.3: Semantic domains for the Zarf static semantics. See Figure 3.4 for the typing
rules.

in languages like Haskell and ML). Both functions and datatypes are declared at the

top level; since the ISA is lambda-lifted, the introduction of universally-quantified type

variables ranging over a function body or datatype is limited to the top level as well,

simplifying the ISA’s type system.

Our static analysis requires that type information be encoded into the binary, but we

note specifically that the Binary ExclusionUnit discards these annotationswhen finished,

leaving a (safe and certified) standard binary program in protected core memory. To

qualify as a typed Zarf program, a binary must declare types of all top-level functions

and make all (data) constructors members of a datatype. With this, all types will be

tracked and checked, including type variables for polymorphism, facilitating local type

inference within the bodies of functions.

3.3.1 Static Semantic Rules

The type system in Figure 3.4 describes, using a set of inference rules, what it means

for a Zarf binary to be well-typed; the associated static semantic domains are found in

Figure 3.3. In this section we define what each inference rule means formally.

func-ret

Rule func-ret checks functions that have zero parameters. It does so by determining

the type τr2 of the function body via the inference rule over e, comparing it against the

expected return type τr2 via the call to princType. If the result of that function call
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Functions ⊢ func : τ

τr1 = makeRigid(τr) ⊢ e : τr2

princType([τr1, τr2]) = τr1

⊢ fun fn [] τr = e : τr
(func-ret)

(τ⃗p1 → τr1) = makeRigid(τ⃗p → τr)
x⃗ 7→ τ⃗p1 ⊢ e : τr2 princType([τr1, τr2]) = τr1

⊢ fun fn −−−−→x : τp τr = e : τ⃗p → τr
(func-params)

Expressions Γ ⊢ e : τ

idTy(Γ, id) = τi α = freshGenTV Γ1 = Γ[x1 7→ α]
map(argTy(Γ1),−−→arg) = τ⃗a applyType(τi, τ⃗a, [], α) = τ1 Γ[x1 7→ τ1] ⊢ e : τ

Γ ⊢ let x1 = id −−→arg in e : τ
(let-var)

Γ[x 7→ Int] ⊢ e : τ
Γ ⊢ let x = n in e : τ

(let-int)
argTy(Γ, arg) = τ
Γ ⊢ result arg : τ

(result)

Γ(x) = dt −−−→cons = getCons(dt) allConsPres(−−−→cons,
−→
br) = true

τ⃗ = brTypes(Γ,
−→
br,−−−→cons) princType(τ⃗) = τ

Γ ⊢ case x of
−→
br : τ

(case-con)

Γ(x) = dt −−−→cons = getCons(dt) τ⃗ = brTypes(Γ,
−→
br,−−−→cons)

Γ ⊢ e : τe princType(τe :: τ⃗) = τ

Γ ⊢ case x of
−→
br else e : τ

(case-con-else)

Γ(x) = Int (−−−−−−→ni ⇒ ei) ∈
−→
br Γ ⊢ ei : τi Γ ⊢ e : τe princType(τe :: τ⃗i) = τ

Γ ⊢ case x of
−→
br else e : τ

(case-int)

Figure 3.4: Zarf static semantics (typing rules). See Figure 3.2 for the abstract syntax
and Figure 3.3 for the static semantic domains. map, filter, and concatMap refer to
their standard definitions. delete removes the first instance of an element from a list.
We use the notation Γ[x 7→ τ] to represent the creation of an updated map Γ where the
new entry x 7→ τ has been added to the old map; similarly, Γ[⃗x 7→ τ⃗] denotes mapping
the first variable in x⃗ to the first type in τ⃗, etc. for all point-wise pairs. Unless otherwise
stated, the lengths of both lists must be the same. We use the notation O(·) to indicate
an “Option” type: essentially a set guaranteed to contain zero or one values. We use the
symbol • to represent the absence of a value where an “Option” type is required. We
differentiate between metavariables with subscripts that can be a combination of letters
or numbers; for example, τ and τ1 represent distinct metavariables denoting types. See
Sections 3.3.1 and 3.3.2 for descriptions of each rule and helper function, respectively.
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doesn’t equal the expected type, the inference rule fails, indicating a type error.

func-params

Rule func-params checks functions that have one or more parameters. It does so

by mapping each function’s parameters to its declared types before checking the body.

makeRigid universally quantifies all type variables in the type declaration across the

body. Like rule func-ret, it uses princType to check that the function body’s expected

type matches its inferred type, with failure indicating a type error.

let-var

Rule let-var applies a type to zero or more arguments using the helper applyType

to get the principal type of the application. Functions may be partially-applied, and

mapping the bound variable to a fresh type variable allows for recursive definitions. It

determines the type of the next subexpression expression e in an updated environment

Γ[x1 7→ τ1].

let-int

Rule let-int performs constant assignment, simply updating the environment with

a binding from identifier x to the type Int.

case-con

Rule case-con is used when scrutinizing a datatype. It gets the list of constructors

associated with a particular datatype, replacing all type variables in its constructors’

fields with any type variable instantiations found in the datatype. It uses the helper

brTypes to get the type of each branch.
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case-con-else

Rule case-con-else is similar to case-con, but used when all constructors of the

datatype aren’t present. In this case, an else branch is required so that the entire

expression can always evaluate to a value with a type τ.

case-int

Rule case-int is used when scrutinizing an integer. It compares branch body types

for equality, and like rule case-con-else, an else branch is required, as it is not feasible

to have branches for every possible integer value.

result

Rule result is the base case, simply producing the type of a bound variable or integer.

As result is the only expression without a subexpression, it is guaranteed to be the last

expression of all branches of a function.

3.3.2 Static Semantic Helper Functions

The rules used in type system in Figures 3.4 and described in the previous section

use a variety of auxiliary functions for clarity in defining the semantics. In this section

we define what each helper function does formally.

applyType

Performs constraint generation, unification (unify), and substitution (substitute)

to get the principal type of an application. When no arguments are applied, the type of

this helper’s first parameter is returned, thus allowing the Let instruction to apply an

integer, datatype, or generic type as well as function types. Note that because the type
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returned by applyType is the principal type of the variable to which it is bound in the

Let instruction, no constraints are propagated to any instructions that follow, limiting

the amount of information that needs to be tracked throughout typechecking, as well

as making error reporting of ill-typed applications more accurate.

allConsPres

allConsPres checks if all the constructors have a matching branch. Note that it is

not ill-typed for the pattern branch to provide more binders than the constructor has

fields; it’s only ill-typed if those extraneous binders are used in the branch body. In the

helper brTypes, when the added binders are mapped to their types, it is implied that the

mapping is guaranteed to be no larger than the number of types in the corresponding

constructor. If an extraneous binder is used in the branch body, it will not appear in the

environment because it wasn’t added, and the type system will determine the branch

body to be ill-typed, as expected. This relaxation is needed here because the machine

replaces all the binder references with a field index; if the field is never used in the body

of the branch, then it would not appear in the binary, and therefore we cannot try to

over-constrain it here because the binary would not produce an error during execution.

Also note that there is no requirement that −→br contain exactly the same number of

pattern branches as the number of constructors; it is okay for there to be more branches

that constructors for the given datatype. In the helper function brTypes, we ensure

that each pattern branch matches a constructor in the cased-on datatype; therefore,

the implication is that having duplicate pattern branches is acceptable, as long as they

match a constructor of the scrutinized datatype.

77



Bouncer: Static Program Analysis in Hardware Chapter 3

allConsPres ∈
−−−−−−−−−−→
Constructor ×

−−−−−−→
Branch→ Bool

allConsPres([], ) = true

allConsPres((con cn τ⃗) ::−−−→cons,
−→
br) = (cn ⇒ ) ∈

−→
br ∧ allConsPres(−−−→cons,

−→
br)

applyHelper

applyHelper generates constraints between a function application’s parameters

and arguments, taking care to handle over-application appropriately. It does so by

recursively iterating through a list of parameter and argument types, generating the

constraint that the current parameter must equal the current argument. As function

types are uncurried in this formalism, it is used to determine when to continue applying

extra arguments to the current function’s return type, which must also be a function

type.

applyHelper ∈ FuncType ×
−−−→
Type × ConstraintSet × TypeVar → Type

applyHelper(τp :: τ⃗p → τr, τa :: τ⃗a,C1, α) = applyType(τ f , τ⃗a,C2, α)

where

C2 = {τp = τa} ∪C1

τ f =


τr if τ⃗p = []

τ⃗p → τr otherwise

applyType

applyType describes application of a type to a (possibly empty) list of argument

types, performing constraint generation, unification (unify), and substitution (substitute)

to get the principle type of an application. When applying a function type to a non-

empty list of argument types, it calls applyHelper, which performs the step of constraint
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generation so that this function can verify that the application is valid via unification.

This and the associated helper functions are needed because of the uncurried presen-

tation of functions in the abstract syntax, which reflects their representation in the

machine more closely. Note that it is considered an error to try to apply a non-function

type to a non-empty list of argument types. When no arguments are applied, the type

of this helper’s first parameter is returned, thus allowing the Let instruction to apply

an integer, datatype, or generic type as well as function types.

The argument α is used to denote the type variable that the variable in the current

let binding was bound to before calling this function. This is necessary to handle the

case where an argument’s type is unknown when application begins because it is being

recursively defined. For example, in let ones = Cons 1 ones in ..., ones is being

recursively defined and therefore will not have a type fully determined until after

application; upon a call to applyHelper, the parameter ones will have type α (where α

is fresh) in the environment. After the process of constraint generation and unification

is completed during this application, if α is found in the substitution, that means it was

used as an argument during application and we can then check that its use corresponds

correctly with the result of the entire application.

applyType ∈ Type ×
−−−→
Type × ConstraintSet × TypeVar → Type

applyType(τ1, τ⃗a,C, α) =


τ2 if τ⃗a = []

applyHelper(⃗τp → τr, τ⃗a,C, α) if τ⃗a , [] ∧ τ1 = τ⃗p → τr

where

σ = unify(C)

τ2 = substitute(σ, τ1)

true = (α < dom(σ)) ∨ ((α 7→ τα) ∈ σ ∧ substitute(σ, τα) = τ2)
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argTy

argTy determines the type of an argument; if the argument is a variable, it looks

up its mapping in the type environment. All arguments must be literals (integers) or

previously bound in the environment.

argTy ∈ Env × Argument → Type

argTy(Γ, arg) =


Int if arg = n

τ if arg = x ∧ (x 7→ τ) ∈ Γ

brTypes

brTypes typechecks a list of branch bodies, mapping the branch’s binders to the

matching constructor’s field types. It does so by iterating over a list of pattern branches,

evaluating the branch’s body expression in an environment where the pattern’s binders

have been mapped to the matching constructors field types. Note that the number

of variables in a pattern branch need not equal the number of fields in the matching

constructor; any variables without a matching field (because too many variables were

supplied in pattern) are ignored. This is okay because any reference to those omitted

variables (which shouldn’t be allowed) will be caught during typechecking of the

branch’s body expression, giving an ill-typed result due to a bad environment lookup, as

desired. This rule also shows that each pattern branchmust have amatching constructor

in the list of constructors; it is considered ill-typed for a pattern matching a constructor

of a different datatype to be present in the list of branches of the current case.
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brTypes ∈ Env ×
−−−−−−−−−−→
Constructor ×

−−−−−−−→
PatCons→

−−−→
Type

brTypes(Γ,−−−→cons, []) = []

brTypes(Γ,−−−→cons, (cn x⃗⇒ e) ::
−→
br) = τ :: τ⃗

where

true = (con cn τ⃗ ∈ cons)

Γ[⃗x 7→ τ⃗] ⊢ e : τ

τ⃗ = brTypes(Γ,−−−→cons,
−→
br)

BuiltinTypes

BuiltinTypesmaps primitive operator identifiers (⊕ as shown in the abstract syn-

tax) to the types of the primitive operations they represent. For example, +maps to

the function type [Int, Int] → Int. The set of builtin operators and their types is fixed,

straightforward, and thus omitted here for brevity’s sake.

Datatypes

Datatypes is simply the list of datatypes extracted out of the top-level program

definition.

Functypes

Functypes is a map from function and constructor identifiers to their respective

types, created from the list of function and datatype declarations that constitute a pro-

gram. −−−→data and −−−→func are the list of datatypes and functions, respectively, that constitute

the contents of a program (see Figure 3.2).
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Functypes ∈ Operator → Type

Functypes = τ⃗c ++ τ⃗ f ++ τ⃗b

where

τ⃗c = concatMap(createConsTys,
−−−→
data)

τ⃗ f = map(createFuncTy,
−−−→
func)

τ⃗b = BuiltinTypes

createConsTys

createConsTys is a helper function for Functypes, creating types for each of the

constructors that are part of a datatype. If a constructor has fields, its type is a function

typewhere those fields are the parameter types and the datatype of which it is amember

is the return type. If the constructor doesn’t have fields, its type is just the datatype of

which it is a member.

createConsTys ∈ Datatype→ (Name→ Type)

createConsTys(data tn α⃗ = −−−→cons) = map(createConTy(tn α⃗),−−−→cons)

createConTy

createConTy is a helper function for createConTy, creating a types a constructor

that is a part of a datatype.

createConTy ∈ Datatype × Constructor → (Name→ Type)

createConTy(dt, con cn τ⃗c)
cn 7→ (τ⃗c → dt) if |⃗τc| ≥ 1

cn 7→ dt otherwise
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createFuncTy

createFuncTy is a helper function for Functypes, creating a type for a functions

defined in the program.

createFuncTy ∈ Function→ (Name→ Type)

createFuncTy(fun fn −−−→x : τ τ = e) =
fn 7→ (⃗τ→ τ) if |−−−→x : τ| ≥ 1

fn 7→ τ otherwise

freshTypes

freshTypes is a helper function for idTy, replacing all of a type’s generic type

variables with fresh generic type variables, consistently across the type.

freshTypes ∈ Type→ Type

freshTypes(τ1) = τ2

where

α⃗ = filter(isGeneric, getTyVars(τ1))

σ = α⃗ 7→
−−−−−−−−−−−→
freshGenTV

τ2 = substitute(σ, τ1)

freshGenTV

freshGenTV gets a fresh uniquely-identifiable generic type variable.

freshRigTV

freshRigTV gets a fresh uniquely-identifiable rigid type variable.
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getCons

getCons retrieves the constructors associated with a datatype and replaces any

type parameters in those constructors’ field types with any type variable instantiations

recorded in the datatype.

getCons ∈ Datatype→
−−−−−−−−−−→
Constructor

getCons(tn τ⃗t) = −−−→cons2

where

(data tn α⃗t = −−−→cons1) ∈ Datatypes

σ = zip(α⃗t, τ⃗t)

−−−→cons2 = map(instCon(σ),−−−→cons1)

getTyVars

getTyVars gets the set of type variables used in a type. unions takes the union of

each set in a list.

getTyVars ∈ Type→ P(TypeVar)

getTyVars(τ) =

{T } if τ = T

{T⃗ } if τ = dt T⃗

unions(map(getTyVars, τ⃗p)) ∪ getTyVars(τr) if τ = τ⃗p → τr

idTy

idTy allows let-polymorphism by replacing non-rigid type variables with fresh ones.

It does so by getting the type associated with an identifier from the type environment,

if present; otherwise, it looks up the identifier in the set of declared function types.
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Afterwards, it uses freshTypes to replace all generic type variables in the type with

fresh new ones. This function is used during the let expression for getting unique

instances of types so that type variables do not inadvertently clash during the process

of unification and substitution (let-polymorphism).

idTy ∈ Env × Identifier → Type

idTy(Γ, id) =


freshTypes(τ) if id = x ∧ (x 7→ τ) ∈ Γ

freshTypes(τ) if id = op ∧ τ = Functypes(op)

instCon

instCon instantiates a constructor by replacing the type variables in its field types

with its mapping in the constraint list.

instCon ∈ Substitution × Constructor → Constructor

instCon(σ, con cn τ⃗) = con cn substitute(σ, τ⃗)

makeRigid

makeRigid converts all generic type variables in a type into consistently-renamed

rigid type variables.

makeRigid ∈ Type→ Type

makeRigid(τ1) = τ2

where

α⃗ = getTyVars(τ1)

σ = α⃗ 7→
−−−−−−−−−−−→
freshRigTV

τ2 = substitute(σ, τ1)
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princType

princType determines if a list of types all refer to the same type, determining the

most general type that matches all of them. For example, it is used at the end of the

case typing rule to check that all branch bodies have a compatible type. This check is

different than a normal check for equality because it takes into account type variables.

princType ∈
−−−→
Type→ Type

princType(τh :: []) = τh

princType(τ1 ::τ2 :: τ⃗tl) = princType(τ3 :: τ⃗tl)

where

σ = unify({τ1 = τ2})

τ3 = substitute(σ, τ2)

substitute

substitute takes a constraint set and a type, recursively replacing all type variables

present as keys in the constraint set with their associated value.

substitute ∈ ConstraintSet × Type→ Type

substitute(C, τ) =



τ2 if τ = T ∧ (T = τ1) ∈ C ∧ τ2 = substitute(C, τ1)

tn τ⃗2 if τ = tn τ⃗1 ∧ τ⃗2 = map(substitute(C), τ⃗1)

τ⃗p2 → τr2 if τ = τ⃗p1 → τr1 ∧

τ⃗p2 = map(substitute(C), τ⃗p1) ∧

τr2 = substitute(C, τr1)

τ otherwise
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unify

unify performs the standard process of unification, iterating over each constraint

in the constraint set and creating a substitution that contains a mapping from type

variables to types. Any cases unlisted in this function imply that the function fails in that

case. Regarding rigid type variables: the rigid types β1 and β2 are successfully unified if

and only if β1 equals β2. This is because in the context of checking a function, rigid type

variables cannot be replaced or unified with any other concrete type or polymorphic

type variable. For compound types like functions and data types, unification proceeds

recursively.

Similar to map creation, we use the notation {⃗τ1 = τ⃗2} to denote the creation of a

constraint set where the first element of τ⃗1 is paired with the first element of τ⃗2, the

second element of τ⃗1 paired with the second element of τ⃗2, etc.
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unify ∈ ConstraintSet → Substitution

unify(∅) = {}

unify({τ1 = τ2} ∪C1) =

unify(C1) if τ1 = τ2

σ[α 7→ τ2] if τ1 = α ∧ α < getTyVars(τ2) ∧

C2 = updateConstraints(C1, {α = τ2}) ∧ σ = unify(C2)

σ[α 7→ τ1] if τ2 = α ∧ α < getTyVars(τ1) ∧

C2 = updateConstraints(C1, {α = τ1}) ∧ σ = unify(C2)

unify(C2) if τ1 = tn τ⃗1 ∧ τ2 = tn τ⃗2 ∧ |⃗τ1| = |⃗τ2| ∧

C2 = C1 ∪ {⃗τ1 = τ⃗2}

unify(C2) if τ1 = τ⃗p1 → τr1 ∧ τ2 = τ⃗p2 → τr2 ∧ |⃗τp1| = |⃗τp2| ∧

C2 = C1 ∪ {⃗τp1 = τ⃗p2} ∪ {τr1 = τr2}

updateConstraints

updateConstraints iterates through a constraint set, replacing all type variables in

each constraint by their mapped types, if present in the substitution. This is a helper

function used only by unify.
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updateConstraints ∈ ConstraintSet × Substitution→ ConstraintSet

updateConstraints(∅, ) = ∅

updateConstraints({τ1 = τ2} ∪C1, σ) = {τ3 = τ4} ∪C2

where

τ3 = substitute(σ, τ1)

τ4 = substitute(σ, τ2)

C2 = updateConstraints(σ,C1)

3.3.3 Properties and Proofs

Two formal properties, when combined, can guarantee that the machine never has

to create and return an error object. The first is progress, which says that if a term

is well-typed, then there is always a way to continue evaluating it according to the

semantic rules; the second is preservation, which says that if a term is well-typed,

evaluating it will result in a well-typed term. Taken together, we have a guarantee that

there will always be an applicable semantic rule to evaluate each step of the program,

which means that we never encounter anything outside of our semantic definitions and

never run into type or memory errors.

We prove progress and preservation in a straightforward way, via induction on the

typing rules and the dynamic semantics, giving a brief overview below.

Lemma 4 (Apply Type). applyType (τi, τ⃗a,C, α
)
returns the principal type of an application

of a type to zero or more arguments.

Proof. applyType generates a constraint for each parameter and argument until the

list of arguments τ⃗a is exhausted. Unifying these constraints to produce a substitution,

it then determines the principal type of the application; this proof relies on standard
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proofs on principal type generation.

Lemma 5 (Progress of Functions). Assuming the correct arguments are given, executing the

body of a well-typed function

fun fn −−−→x : τ τ = e produces a value of type τ , Error, when the body terminates.

Proof. The rule func-params checks a function body e in an environment Γ that maps

the parameters in x⃗ to their declared types in τ⃗. Any type variables in those parameter

types and the return type are replaced with fresh rigid type variables, implying that

those parameters cannot be specializedwithin the function body (i.e they are universally

quantified across the entire function). Rule func-ret follows similarly, except that the

initial environment used to typecheck the body e is empty. We must show that Γ ⊢ e : τ,

that is, that the function body evaluates to a non-error value of type τ. The proof

proceeds by induction on the derivation of e and using Lemma 4:

Case (let-var: e = let x1 = id −−→arg in e1). Let τi be the type of id; the helper function idTy

looks up its entry in Γ if present, otherwise id is function or constructor name and its

type is statically known by referring to the program’s function type list. If −−→arg = [], then

by induction Γ[x1 7→ τi] ⊢ e1 : τ. Otherwise, by Lemma 4, applyType(τi, τ⃗a, [], α) = τ1

returns x1’s principal type (where τ⃗a and α are the types of the arguments and x1,

initially, respectively). By induction then, Γ[x1 7→ τ1] ⊢ e1 : τ.

Case (let-int: e = let x = n in e1). Then Γ[x 7→ Int] ⊢ e1 : τ by induction, since n : Int.

Case (case-con: e = case x of
−→
br). Let (x 7→ dt) ∈ Γ, so that the value of x is a constructor

named cn with fields of type seqsτ. By definition, all constructors that are members of

type dt must have amatching branch cni x⃗i ⇒ eiinbr. Additionally, eachmatching branch

must contain at least as many binders x⃗i as fields in its constructor, such that all variable

references in the branch body ei are valid. (All of these requirements are handled

in the helper function allConsPres.) The helper function brTypes then proceeds to
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get the type of each branch body, in the environment Γ extended with bindings from

the pattern binders to the constructor field types for that particular constructor. By

induction, those bodies e⃗i return types τ⃗i, all of which must be unifiable as a type τ.

As case is the only source of control flow, requiring case completeness ensures that

machine cannot attempt to go to an invalid location or reach an error state.

Case (case-con-else: e = case x of
−→
br else ee). This case proceeds as in case-con above,

except the restriction that all branches for the scrutinized datatype be present is relaxed.

Instead, an else expression ee is required to maintain control-flow safety.

Case (case-int: e = case x of
−→
br else ee). Let (x 7→ Int) ∈ Γ, so that the value of x is n.

Since all branches −−−−−−→ni ⇒ ei ∈
−→
br may be a match, the typing rule requires all branch

bodies result in a unifiable type. Additionally, since the number of values in the set

of integers is enormous, the rule requires an else expression ee be provided to handle

the non-matching case. As the case expression is the only source of control flow in

the system, and because we require an else branch when scrutinizing an integer, the

machine cannot go to invalid location or produce an error at this stage. By induction,

Γ ⊢ ee : τe and Γ ⊢ ei : τi for all branch bodies, which must be unifiable to the type τ.

Case (result: e = result arg). If arg = n, then τ = Int. If arg = x, then (x 7→ τ) ∈ Γ, stored

previously via the rules let-* or because it was an argument to the function. As this

is the base instruction, it is always the last instruction in each branches of a function.

Therefore its type will be the type of the function itself (and must match all other result

types of the function, checked in the func-* rules).

Theorem 2 (Progress of Programs). Let P be a well-typed program composed of a list of

datatypes −−−→data and functions −−−→func. Let
(
fun main −−−→x : τ τ = e

)
∈
−−−→
func be the entry point to P

where execution begins. Then P either halts and returns a value of type τ , Error, or it

continues execution indefinitely.
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Proof. By Lemma 5 and rule func-params, we know that

fun main −−−→x : τ τ = e has type τ (similarly for functions without parameters, using rule

func-ret). Since a hardware error value of type Error is created when the machine

encounters an invalid state during evaluation, and Lemma 5 says that a well-typed

function does not lead to an invalid state, P returns a value of type τ , Errorwhen it

terminates.

3.4 Algorithm for Analysis

As mentioned earlier, the Binary Exclusion Unit (BEU) can be used as a runtime

guard, checking programs right before execution when they are loaded into memory,

or as a program-time guard, checking programs when they are placed into program

storage (flash, NVM, etc.). In either case, checking works the same way: each word of

the binary is examined one at a time as it streams through. Central to this process is

the embedded Type Reference Table (TRT), which is copied from the binary into the

checker’s memory and contains the type information for the binary. This serves as a

reference during all stages of the checking process and will be extended during the

checking of each function as local variables are introduced. Later, when the BEU arrives

at a new function, it consults the function signature, which provides type information

for the arguments and the return type of the function. Each instruction in the function

is then scanned word-by-word, guaranteeing type safety of each instruction according

to the static semantics (Figure 3.4). Checking can fail at any step of the process: e.g.,

a function might expect an Integer but is passed a List, or the add function, which

expects two Integer arguments, is given three. A single type violation causes the entire

program to be rejected. The steps required to check each instruction class are described

in more detail below:
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Let —When a Let instruction is encountered, we first check for special-case operations:

applying no arguments to something will always result in the same thing, so we can

simply assign the result to that type and do no further checking. Assuming the Let

does have arguments, the checker then gets the type of the function and creates an alias

of it in a new TRT entry. The point of the alias is to make each type variable unique

— e.g., the same type List a (a list of elements of type “a”) used in two places may

not be using the same type for “a”, so the separate usages should have separate type

variables. In order to allow recursive Let operations, a type variable is assigned to the

result of the operation; when all the arguments have been processed, that variable will

be set equal to what’s left. The checker goes through each argument, one at a time, and

unifies its type with the function’s expected type. This creates a list of constraints that,

along with the constraint on the resulting type variable, are checked altogether as the

last step. If there are no inconsistencies in the constraint set, the operation was valid,

and a new valid type is produced for the local variable.

Because type inference is relatively simple, we chose to forgo type annotations

on each function application that indicate the result of the operation. Instead, the

checker uses function-local type inference to figure out the return type of each function

application. Because function calls (Let instructions) make up the majority of the

instructions in a binary, the absence of annotations on each one results in much smaller

binary sizes for typed binaries.

Special care must be taken in Let instructions when the resulting type is a function,

and when the function being applied has a function in its return type. The former re-

quires creating a new TRT entry for the function; the latter requires a special “unfolding”

routine to begin applying arguments to the function in the return type. Both of these

are reasons that the Let section of the hardware checker has so many states (Table 3.2).
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Case — Case instructions are much more straightforward. The checker simply saves

some type information on what the program is casing on, which is used in later in-

structions. Specifically, the primary task is to get the type of the scrutinee (the thing

being cased on) and save a reference both to the particular variable’s type and the root

program datatype (assuming the variable is a constructor, not an integer). For example,

this way branches will know that a List was cased on, not a Tuple, and know that the

particular variable was a List Int as opposed to a List Char.

Pattern_literal branch heads are quite simple: the case head must be an integer,

and the value specified in the instruction must be an integer.

Pattern_con branch heads are one of the more complex things to check. We have

to reconcile the generic type of the indicated pattern (constructor) with the specific

type of the variable that we’re matching against. To do this, the checker must get the

function type specified in the pattern head, then alias it in a new TRT entry. Then we

must generate the constraint that the return type of the function is the same as the type

of the scrutinee— this ensures that the type variables in this entry will be constrained to

be the same as those in the original scrutinee. Constraints can then be checked, yielding

a map with which the variables can be recursively replaced to the correct types. Finally,

a pointer is set to where the fields of the constructor begin (if applicable). When we

are done, we have direct, usable information on the type of each field in the constructor,

which can be used by following instructions.

In addition, we must keep track of which constructors we’ve seen in this case state-

ment; that way, when we get to the end of the Case, we’ll know if all of the constructors

of that type were present or not. A Case statement must either contain an else branch

or use all constructors of the scrutinee’s type.
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Figure 3.5: An example Type Reference Table (TRT) for the function map. The original
program is shown in (a), while (b) shows the actual binary type information that the
assembler produces (annotated for human understanding). This type information is
included at the head of the binary file, leaving the program unchanged. The first section
lists types used in the signatures of the program, while the second section contains type
information for the parameters and return type of each function. The type system is
polymorphic and uses function-local type inference.
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3.5 BEU Implementation

At a high level, the BEU is a hardware implementation of a pushdown automaton

(PDA) and is structured as a state-machine with explicit support for subroutine calls.

While there a numerous bookkeeping structures required, we must take care to access

a single structure at a time to ensure we do not create structural hazards. The final

analysis hardware is the result of a chain of successive lowerings from a high-level

static semantics ending with a concrete state chart that we could then implement with

minimal and straighforward hardware. First, a bit-accurate software checker was made

that checked binary files. Then, a cycle-accurate software pushdown automata was

written from that refined specification. From that program, the leap to real hardware

was somewhat straightforward (see Section 3.7 for synthesis results). The full details

of the checker cannot hope to fit in this paper, so we concentrate here on the strategy

used at a high level and a couple of details to give a better sense for the full design.

The first challenge in implementing this analysis is how to encode the type informa-

tion into the binary. As discussed in the prior section, we put this information at the

head of each binary in the form of the TRT. To get a sense of what that actually looks

like in a real implementation, Figure 3.5 shows an example TRT for the function map.

This information is discarded after checking, leaving a standard, untyped binary, which

executes with normal performance.

At the bit-level, we see only a sequential series of bytes. Therefore, all type infor-

mation must be encoded into a single list. To avoid unnecessary complexity, we make

all entries in the TRT fixed-width 32-bit words. An entry can be either 1) a program-

specified datatype or built-in type1, or 2) a derived type based on another type. Entries

of type 2 can have one or more argument words, which we refer to as “typewords.”
1The Zarf ISA includes integers and an error datatype built-in.
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“Derived” here means that the entry contains references to other types in the table.

This manifests as either a type applied to some type variables or as a function. For

example, List is specified as a program datatype with one type variable, then derived

type entries can create the types List a, List Int, etc, where a and Int are typewords

following the derived type entry.

The second challenge in bringing the typechecker to a low level is dealing with

recursive types. Implicitly, types in the system may be arbitrarily nested: for example,

one could declare a List of Tuples of Lists of Ints. During the checking process, the

hardware typechecker must be able to recursively descend through a type in order to

make copies, do comparisons, and validate types. Because of this, the Binary Exclusion

Unit cannot be expressed as a simple state machine — a stack is required for recursive

operations (and hence the pushdown automaton).

Data structures used in the higher-level checking, like maps, need to be converted

to structures native to hardware: they must flattened into a list, which can be stored

in memory. In some cases, this requires a linear scan to check for the presence of

some elements, such as checking case completeness — but those lists tend to be small,

containing just one entry for each constructor of a given datatype. We found that all of

the structures could be represented as lists with stack pointers, except in the case of the

type variable map used in the recursive replace procedure, which required two lists

(one to check for membership in the map, the second with values at the appropriate

indices).

To create the control structure of the PDA, we started by implementing a software-

level checker, broken into a set of functions implemented with discrete steps, where

each step cannot access more than one array in sequence (in hardware, the arrays will

become memories, which we do not want strung together in a single cycle). While,

given our space constraints, it is difficult to describe the system in detail, the number of
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Purpose Number of States
Initialization 21
Function signatures 15
Dispatch 6
Let checking 37
Return checking 3
Case checking 7
Literal pattern checking 1
Constructor pattern checking 21
Following references 6
Type variable (TV) counting 12
Recursive TV replacement 12
Recursive TV aliasing 26
Generating constraints 19
Checking constraints 21
Total 207

Table 3.2: Number of states devoted to the various parts of the Binary Exclusion Unit’s
state machine. Checking function calls, allowing for polymorphic functions with type
variables, and constraint checking were the most complex behaviors, making up most
of the states.

states for each part of the analysis is a reasonable proxy for complexity. The resulting

state machine has 207 states and they are broken down by purpose in Table 3.2. We

summarize them briefly here, with number of states denoted in parentheses. The ini-

tialization stage reads the program and prepares the type table (21 states). Function

heads are checked to ensure the argument count matches the provided function sig-

nature, and bookkeeping is done to note the types of each argument and the return

type (15). Dispatch decides which instruction is executed next and handles saving and

restoring state as necessary for Case statements (6). Let (37), Result (3), Case (7),

Pattern_literal (1), and Pattern_con (21) are checked as outlined in Section 3.4.

Because types can be recursively nested, a type entry in the TRT can reference other

types; a set of states is devoted to following references to find root types as needed (6

states). To handle this, the state machine implements something akin to subroutines.
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A routine executes at the beginning of each function that counts the number of type

variables used in the signature (these type variables are “rigid” within the scope of the

function and cannot be forced to equal a concrete type) (12). Another routine recursively

replaces type variables to make one type entry match the variables in another; it allows

pattern heads to be forced to the same type as the variable in the Case instruction (12).

The aliasing subroutine recursively walks a type and maps its type variables to a “fresh”

set (26). This allows, for example, each usage of List a to have “a” refer to a different

type. Part of the complexity of this task is keeping track of the variables already seen

and what they map to so that a variable is not accidentally mapped twice to different

values. Constraint generation takes two type entries and, based on the entries, branches

and generates the appropriate constraint for the constraint set indicating that the entries

should be equal (19).

Finally, we have the constraint checking routine (21). This is invoked at the end

of each Let instruction, as well as after a Result. Constraint propagation proceeds by

taking one constraint from the set, which consists of a pair of types, then walking all

the remaining constraints in the set and replacing all occurrences of the first type with

the second. In this way, for each unique constraint, one type is eliminated from the

constraint set. If at some point two different concrete types (like Int and List) are

found to be equal, the set is inconsistent and typechecking fails, rejecting the program.

Similarly, if ever a rigid type variable (a type variable used in the function signature)

is found to be equal to a concrete type, typechecking fails. This second fail condition

ensures that functions with polymorphic type signatures are, in fact, polymorphic.

Without it, one could write a function that takes “a” and returns “a”, which shouldwork

for all types, but in fact only works for integers.

As we developed our software and hardware checkers, we used a software fuzzing

technique to generate 200,184 test cases based on prior techniques in program testing
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[83]. Rather than generating random bits, which would not meaningfully exercise

the checker, we encode the type system’s semantics with logic programming and run

them “in reverse” to generate, rather than check, well-typed programs. By performing

mutations on half of these programs, we also generate ill-typed benchmarks. In all

200,184 generated test cases, the simulated hardware RTL has 100% agreement with

the high-level checker semantics. The tests provide 100% of coverage of all 207 states of

the checker.

While the resulting analysis engine is complex, one could certainly reuse parts

of the analysis for other sets of properties and automated translation would be an

interesting direction for future work. The software model is 1,593 lines of Python,

while the hardware RTL is 1,786 lines (requiring extra code for declarations and the

simulation test harness). Synthesis results are found in Section 3.7.

3.6 Provable Non-bypassability

The hardware static analysis we developed has a variety of states governing when

it is active, how it initializes, and so on. An important point of this paper is the non-

bypassibility of these checks, but we need to know that some sequence of inputs cannot

be given to the checker that causes outputs to write to memory that have not been

checked by analysis. To solve this problem, we can create an assertion and employ the

Z3 SMT solver [84] to check it for us. Z3 is well-suited to our task because of its ability

to represent logical constructs and solve propositional queries. In addition, because

we can directly represent the circuit in Z3 at the logic level (gates), we do not have

to operate at higher levels of abstraction and risk the proof not holding for the real

hardware.

We actually translate our entire analysis circuit into a large Z3 expression. Then, we
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add two constraints: the first says that, at some point in the operation of the circuit,

it output the “passed” (meaning well-typed) signal, while the second says that at no

point did the hardware enter the checking states. If the conjunction of the expressions

is unsatisfiable, there is no way to get a “pass” signal without undergoing checking

(and the program will never be loaded if it fails checking). Around 30 of the states deal

with program loading, initialization, etc., and perform no checking; our proof guards

against, for example, situations in which some clever manipulation of the state machine

moves it from initialization directly to passing, or otherwise manages to circumvent the

checking behavior of the state machine.

In the most direct strategy, we use the built-in bitvec Z3 type for wires in the circuit,

with gates acting as logical operations on those bitvectors. Memories are represented as

arrays. Arrays in Z3 are unbounded, but because we address the array with a bitvector,

there is an implicit bound enforced that makes the practical array non-infinite.

A straightforward approach to handling sequential operation of the analysis is

to duplicate the circuit once for each cycle we wish to explore. The cycle number is

appended to the name of each variable to ensure they are unique. Obviously, because

the entire circuit is duplicated for each cycle, this method does not scale well — both

in terms of memory usage and the time it takes to determine satisfiability. Checking

non-bypassability for numbers of cycles up to 32 took under 2 minutes and used less

than 1 GB of RAM. Checking for 64 cycles used almost 16 GB and did not terminate

within four days.

To make the SMT query approach scalable, we employ Z3’s theory of arrays. Instead

of representing each wire as a bitvector, duplicated once for each cycle, we represent it

as an array mapping integers to bitvectors: the integer index indicates the cycle, while

the value at the index is the value the wire takes in that cycle. There is then one array for

each wire in the circuit, and one array of arrays for each memory in the circuit (the first
102



Bouncer: Static Program Analysis in Hardware Chapter 3

array represents the memory in each cycle, while the internal array gives the state of the

memory in that cycle). Logical expression (gates) can then be represented as universal

quantifiers over the arrays. For example, an AND expression might look like, ForAll(i,

wire3[i] == wire1[i] & wire2[i]). This constrains the value of wire3 for all cycles.

Sequential operations are easy, simply referring to the previous index where necessary

for register operations, e.g. ForAll(i, reg1[i] == reg1_input[i-1]). To bound the

number of cycles, we add constraints to each universal quantifier that i is always less

than the bound; this prevents Z3 from trying to reason about the circuit for steps beyond

i.

Solving satisfiability with arrays took under twominutes and under one GB of RAM,

no matter what bound we placed on the cycle count — in fact, even when unbounded,

Z3 was still able to demonstrate our hardware analysis bypassibility assertion was

unsatisfiable — i.e., the circuit is non-bypassable.

3.7 Evaluation

3.7.1 Checking Benchmarks

To understand if real-world programs can be efficiently typed and checked with our

system, we implement a subset of the benchmarks from MiBench [85]. These tended

to be much longer and more complex programs when compared to the randomly-

generated ones. While the fuzzer’s programs averaged 50-65 instructions per program,

the embedded benchmarks range from 500 to over 7,000 and represent code structures

drawn from real-world applications, such as hashes, error detection, sorting, and IP

lookup. In addition to the MiBench programs, a standard library of functions was

checked, as well as a synthetic program combining all the other programs (to see the
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Figure 3.7: BEU evaluation for a set of sample programs drawn from MiBench, an
embedded benchmark suite. For most programs, complete binary checking will take
150-160 cycles per instruction. LEFT: Time for hardware checker to complete, in cycles,
as a function of the input program’s file size. RIGHT: The same checking time, divided
over the number of instructions in each program. Though the stock CRC32 has the
longest typecheck time, an automatic procedure can modify the program to lower the
checking time while preserving program semantics, noted as CRC-short.

characteristics of longer programs).

Figure 3.7 shows how long typechecking took for the benchmark programs as a

function of their code size. A linear trend is clearly visible for most of the programs,

but one stands out from the pack: the CRC32 error detection function. The default

CRC32 implementation is, in fact, a pathological case for our checking method as it is

dominated by a single large function in the program. This function constructs a lookup

table used elsewhere and is fully unrolled in the code. No other benchmark had a

function nearly as large. The typecheck algorithm, while linear in program length (it

checks in a single pass), is quadratic in function length and type complexity2. This

insight not only explains the anomalous behavior of the initial CRC32 program, but

provides a clear solution: break up the large function.

We test this hypothesis by breaking up CRC32 and re-checking it. While the task of
2“Type complexity” refers to how many base types are in a type; i.e., the length of its member types,

recursively.
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breaking up a function in a traditional imperative programming language is complicated

by the large amounts of global and implicit state, and would be even harder to perform

at level of assembly, in a pure functional environment every piece of state is explicit.

This makes the process not only easier, but even possible to fully automate. When

we look at CRC32 specifically, the state, passed directly from one instruction to the

next for table composition, can be captured in a single argument. We perform this

transformation on our CRC32 program to break table construction across 26 single-

argument functions, producing the CRC-short data point in the graphs in Figure 3.7.

It still stands slightly above average because the table-construction functions are still

above the average function length; recursively applying the breaking procedure could

easily reduce the gap further.

While function length is an important aspect of checking time, with some care it can

be effectively managed, and in the end all of the programs examined can be statically

analyzed in hardware at a rate greater than 1 instruction per 100 cycles. This rate is

more than fast enough to allow checking to happen at software-update-time, and could

perhaps even be used at load-time, depending on the sensitivity of the application to

startup latency.

3.7.2 Practical Application to an ICD

In addition to the benchmarks described above, we additionally provide results for

a complete embedded medical application that was typed and checked; specifically, an

ICD, or implantable cardioverter-defibrillator3. The ICD code was the largest single

program examined (only the synthetic, combined program was larger). Its complexity
3An ICD is a device planted in a patient’s chest cavity, which monitors the heart for life-threatening

arrhythmias. In the case one is detected, a series of pacing shocks are administered to the heart to restore
a safe rhythm.
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required the use of multiple cooperating coroutines, managed by a small microkernel

that handled scheduling and communication. Despite its length and complexity, it

had the best typecheck characteristics of any of our test programs, with its cycles-per-

instruction figure falling just below the average at 55.2. The process of adding types to

the application was relatively simple, taking approximately 2 hours by hand.

Attempted Attack Result
Binary that reads past the end of an
object to access arbitrary memory

Hardware refuses to load binary
due to type error "field count mis-
match"

Binary that passes an argument to a
function of the wrong type to cause
unexpected behavior

Hardware refuses to load binary
due to type error "not expected
type"

Binary that writes past the end of
an object to corrupt memory

Hardware refuses to load binary
due to “application on non-
function type”

Binary that passes too few argu-
ments to a function to attempt to
corrupt the stack

Hardware refuses to load binary
due to "undersaturated call"

Binary that uses an invalid branch
head to try and make arbitrary
jump

Hardware refuses to load binary
due to type error "branch type mis-
match"

Binary that jumps past the end of
a case statement to enable creation
of ROP gadgets

Hardware refuses to load binary
due to "invalid branch target"

Jump past the end of a function to
create ROP gadgets

Hardware refuses to load binary
due "invalid branch target"

Table 3.3: A list of some of the erroneous code that may be present in a binary (tested
in our ICD application) and how the BEU identifies it as an error. Some of these errors,
such as reading off the end of an object, writing beyond the end of an object, and
jumping to arbitrary code points, are sufficient to thwart common attacks, like buffer
overflow and ROP.

Since the ICD represents the largest and most complex program, as well as the exact

type of program the BEU is designed to protect, we attempt to introduce a set of errors

in the program to demonstrate the ability of the BEU to ensure integrity and security.
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Some of the errors are designed to crash the program; some are designed to hijack

control flow; others are designed to read privileged data. The list of attempted attacks

and how the BEU caught them are shown in Table 3.3.

In an unchecked system, passing an invalid function argument, writing past the end

of an object, and passing an invalid number of function arguments could all lead to

undefined behavior or system crashes. While past work could establish that a specific

piece of code would not do these things independent of the device, this work establishes

these properties for the device itself, applying to all programs that can potentially exe-

cute — it is simply impossible to load a binary that will allow these errors to manifest.

To establish that this was indeed the case, Table 3.3 shows the result of our attempts

to produce these behaviors: a type error, a function application error, and an under-

saturated call error, respectively. Reading past the end of an object in an attempt to

snoop privileged data was thwarted by detecting a type error dealing with field count

mismatches. Control-flow hijacks, like using an invalid branch head, jumping past the

end of a case statement, and jumping past the end of a function, were caught by a type

mismatch in the first case and the detection of an invalid branch target in the latter two.

Though not exhaustive, these attacks show the resilience of the system to injected

errors when compared to an unchecked alternative and demonstrate its practicality in

the face of real errors and attempted attacks.

3.7.3 Synthesis Results

Synthesized with Yosys, the hardware typechecker logic uses 21,285 cells (of which

829 are D Flip Flops, the equivalent of approximately 26 32-bit registers). Mapped

to the open-source VSC 130nm library, it is .131 mm2, with a clock rate of 140.8 MHz.

Scaled to 32nm, it is approximately .0079 mm2. As an addition to an embedded system
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or SoC, it provides only a tiny increase in chip area, and requires no power at run-time

(having already checked the loaded program).

Assuming the checker can use the system memory, it requires no additional mem-

ory blocks; if not, it needs a memory space at least as large as the input binary type

information, and space linear in the size of the program’s functions.

The worst-case checking rate was 301 cycles per instruction for a pathological pro-

gram; even a program of 450,000 lines with worst-case checking performance can be

checked in under a second at the computed clock speed of 140 MHz on 130nm.

3.8 Related Work

Typed Assembly

When dealing with typed assembly, the most prominent works are TAL [80] and

its extensions TALx86 [81], DTAL [86], STAL [87], and TALT [88]. In TAL, they

demonstrate the ability to safely convert high-level languages based on System F (e.g.

ML) into a typed target assembly language, maintaining type information through

the entire compilation process. Their target typed assembly provides several high-

level abstractions like integers, tuples, and code labels, as well as type constructors for

building new abstractions.

TALx86 is a version of IA32, extending TAL to handle additional basic type construc-

tors (like records and sums), recursive types, arrays, and higher-order type constructors.

They use dependent types to better support arrays; the size of an array becomes part of

its type, and they introduce singleton types to track integer values of arbitrary registers

or memory words. TAL provides a way to ensure that high-level properties like type-

and memory-safety are preserved after compiler transformations and optimizations

have taken place.
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Unlike TAL, our type system was co-designed with hardware checking in mind — a

distinction that greatly impacts the type system design. It allows for binary encoding of

types and empowers the target machine, rather than the program authors, to decide if

a program is malformed. TAL requires a complex, compile-time software typechecker,

as opposed to our small, load-time hardware checker. Our type system operates on an

actual machine binary and not an intermediate language.

The eventual target of TALx86 is untyped assembly code (assembled by their MASM

assembler into x86). The types are not carried in the binary and are not visible to the

device that ultimately runs the code. Though useful, a device cannot trust that the

program it has been given has been vetted; therefore, bad binaries can still run on TAL’s

target machines.

Our work’s most significant contribution, the Binary Exclusion Unit (BEU), over-

comes this problem. The BEU, a hardware typechecker for the system capable of

rejecting malformed programs, is an integral, non-bypassable part of the machine; if

typechecking fails, execution cannot begin. To our knowledge, this is the only hard-

ware module that performs typechecking on binary programs. We leave expansion of

the BEU to other ISAs for future work, but note that the complexity of the TAL type

system indicates that a hardware implementation would be significantly more work

and overhead on an imperative ISA.

Architecture and Programming Languages

In SAFE [89], the authors develop a machine design that dynamically tracks types

at the hardware level. Using these types along with hardware tags assigned to each

word, their system works to prove properties about information-flow control and non-

interference. They claim that the generic architecture of their system could facilitate

efforts related to memory and control-flow safety in further work.
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There has also been important work in binary analysis, which seeks to recover infor-

mation from arbitrary binaries to make sound and useful observations. For example,

Code Surfer [90] is a tool that analyzes executables to observe run-time and memory

usage patterns and determine whether a binary may be malicious. Work on binary type

reconstruction in particular seeks to recover type information from binaries. In onework

[91], they recover high-level C types from binaries via a conservative inference-based

algorithm. In Retypd [92], Noonan et al. develop a technique for inferring complex

types from binaries, including polymorphic and recursive structures, as well as pointer,

subtyping, and type qualifier information. Caballero et al. [93] provide a survey of the

many approaches to binary type inference and reconstruction.

Static safety via on-card bytecode verification in a JavaCard [94] is an interesting

line of work with a similar goal to our approach. However, a hardware implementation

can be verified non-bypassable in a way that is much harder to guarantee for software.

The Java type system is known to both violate safety [95, 96] and be undecidable [97]

which makes it a far more difficult target for static analysis and, we would argue, nearly

impossible to implement in hardware directly.

At the intersection of hardware and functional programming, previous works have

synthesized hardware directly from high-level Haskell programs [98], even incorporat-

ing pipelined dataflow parallelism [99]. Run-time solutions to help enforce memory

management for C programs have been proposed at the software level [100], as well as

in hardware-enforced implementations [101, 102]; these provide run-time, rather than

static, checks.

Other work has used formal methods to find and enforce properties at the hardware

level to help ensure hardware and software security [103], while others have shows the

effectiveness of hardware-software co-analysis for exploring and verifying information

flow properties in IoT software [104].
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3.9 Conclusion

While themicro-controller design in this papermight be an extremely non-traditional

example, going so far as to have proofs of the properties that hold and rejecting non-

conforming programs outright, it opens the door to other work that limits hardware

functionality in meaningful and helpful ways without entirely giving up programmabil-

ity. The result of our effort is a Binary Exclusion Unit that can easily fit into embedded

systems or perhaps even serve as an element in a heterogeneous system-on-chip, provid-

ing a hardware-based solution that cannot be circumvented by software. Our approach

prevents all malformed binaries from ever being loaded (let alone run), and ensures

that all code loaded onto the machine is free from memory errors, type errors, and

erroneous control flow. It requires neither special keys/attestation nor trust in any part

of the system stack (a size zero TCB), providing its guarantees with static checks alone

(no dynamic run-time checking is needed).

This approach has many non-traditional moving parts, from the function-oriented

microprocessor at its heart, to the higher-level instruction set semantics, to the engine

that performs static analysis in hardware. Rather thanwork on an architecture simulator,

we built both the processor and the hardware checking engine in RTL, both to provide

synthesis results and to demonstrate the feasibility of actually building such a thing.

We have proofs of correctness for our approach at the algorithm level and gate-level

proofs of non-bypassability. We coded and typed not just a set of benchmarks, but

also a more complete medical application, which we then tried to break in order to

show that such an approach works in practice as well as in theory. The final design is

surprisingly small, taking no more than .0079 mm2, and is capable of performing our

static analysis on binaries at an average throughput of around 60 cycles per instruction.

We believe this is the first time any binary static analysis has been implemented in
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the machine hardware, and we think it opens an interesting new door for exploration

where properties of the software running on a physical platform are enforced by the

platform itself.
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Chapter 4

Wire Sorts: A Language Abstraction for

Safe Hardware Composition

4.1 Introduction

In our current era of diminished transistor scaling, the need for higher levels of

energy efficiency and performance is greater than ever. The quest to achieve these

goals calls for more people to be able to participate in the creation of accelerators

and other digital hardware designs. It has become common for hardware designers

to utilize commercial libraries (known as Intellectual Property or IP catalogs) to get

hold of the most efficient or performant hardware components. At the same time,

open-source hardware has begun to emerge as a viable development strategy, drawing

parallels to open-source software, due to the commercial benefits of exploiting free

and open components. This new development paradigm raises questions of how

hardware developers can best compose their components and treat their underlying

implementations as opaque.

Modern high-level programming languages have many mechanisms that work in
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support of effective modularity and abstraction; for example, one might place require-

ments on data (e.g. arguments) at an interface (e.g. function call) through a type

system. Most hardware description languages (HDLs), in contrast, have comparatively

little support for these features. The interface of the primary unit of abstraction, a

module, is typically described simply as “wires” which, in turn, may be refined as

“input” or “output.” However, we find experimentally across hundreds of designs that

these interfaces actually carry surprisingly complex requirements not just on how the

data are to be used or interpreted but even on what compositions leads to well-defined

digital designs. The goal of our work is to turn a programming language eye to this

problem: to be mathematically precise in the definition of wired interfaces and ulti-

mately give more support to hardware designers seeking modularity, abstraction, and

better compositional guarantees at the HDL level.

We wish to support a scenario where (1) separate hardware designers can inde-

pendently create a set of hardware modules according to some connection protocol

using an HDL, and the HDL can automatically infer relevant properties about the input

and output wires for each module in isolation; (2) a hardware designer can treat these

modules as opaque components without knowledge of their internals, wiring them

together into a circuit such that the HDL provide guarantees based on the properties of

the modules’ input and output wires; and (3) the number of design “surprises” discov-

ered late in the development cycle due to intermodular incompatibilities is significantly

reduced.

Such a scenario is increasingly not just desirable but strictly necessary. In the tradi-

tional design methodology where a whole chip may be designed by a single company

or team who can agree on interfaces in advance and readily inspect modules’ internals,

establishing modules’ compositionality was straightforward. However, this is a much

stickier problem in a world of IP-driven design where the user of a module may have
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no knowledge of the module’s internals, perhaps even working with an obfuscated or

encrypted design [105]. IP catalog designers today lack any clear specification of the

module-level connection properties needed to ensure well-composed designs. Thus,

it is incredibly easy to create a design that assumes something about an up- or down-

stream interface which only becomes apparent after the full design has been completed

at the RTL level. Discovering such an issue late in the process can be a serious issue

because the exact cycle a data value is produced might need to change to accommodate

a different interface. While this sounds easy in theory, traditional RTL design practices

are fragile to timing changes, and fixing problems might mean significant surgery to

control state machines, the recoordination of multiple producers or consumers, or even

failure to meet a latency goal. As we ask a broader set of engineers to engage in the

hardware design process, whether to understand tradeoffs in an AI accelerator design

or deploy computation into an FPGA in the cloud, we need languages that help steer

effort towards realizable designs and reduce the number of “surprises” (i.e. failures)

typically only found at the very last stages of implementation (at synthesis time).

The specific property that we focus on in this work is what we are calling well-

connectedness; we formally specify the property in Section 4.3.4 but informally, it implies

that the final circuit does not contain any combinational loops.1 Combinational loops

are a sign of a broken design (except in certain rare circumstances) andmust be avoided.

Such loops are easy to spot once all components have been fully implemented and then

synthesized into a netlist (one need only look for cycles in the netlist graph) but are

hidden through the entire process of design at the HDL level, especially when they cross

module boundaries and require reasoning about multiple modules’ internal structures.
1This is a necessary but not sufficient condition for overall correctness. For example, we are not

concerned in this paper about checking that a specific protocol is being correctly followed. Our techniques
could potentially also reason about properties related to timing and circuit layout, but we leave these for
future work.
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This is a real problem we have encountered in our experiences writing digital hardware

designs, motivating us to find better ways via programming language abstraction and

enforcement.

This problem of avoiding combinational loops at the HDL module level is surpris-

ingly subtle, requiring that designers reason about a number of non-obvious corner

cases. Well-connectedness cannot always be guaranteed by looking at pair-wise module

interconnections but is in fact a property of the entire circuit requiring information about

all modules at once. Nevertheless, we show that it is possible to annotate module inter-

faces at the HDL level for each module independently such that the well-connectedness

of a given combination of modules can be automatically proven by only looking at

these interface annotations. We further show that if a full implementation of the design

is already available, such as for legacy code, we can automatically infer annotations

directly from the design. These annotations in turn radically lessen the number of

interfaces where “surprises” might occur, allowing designers to focus their attention

more effectively. The specific contributions of this paper are:

• We are the first to apply a modular static analysis to the problem of ensuring

the correct compositionality of hardware modules in arbitrary RTL, via a global

property which we define as well-connectedness.

• We prove this property is achievable in a modular way via a mathematical spec-

ification of wire dependencies, developing a novel taxonomy of sorts: to-sync,

to-port, from-sync, and from-port.

• We embody these properties, and the analysis they enable, in a usable and scalable

tool that completely prevents the late discovery of combinational loops. We further

propose an extension to the analysis to protect synchronous memory semantics

through composition.
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• We analyze more than 500 parameterized hardware modules to quantify, for the

first time, the diversity of expectations placed on module interfaces found in the

wild. Across three independent projects (BaseJump STL, OpenPiton, and a RISC-V

implementation) our analysis is able to automatically infer the correct wire sorts

to enable composability in less than 31 seconds. Our analysis is 2.6–33.9x faster at

finding intermodular loops than standard cycle detection during synthesis.

In Section 4.2 we describe related approaches to modular hardware design and

why they do not solve the problem addressed in this paper. In Section 4.3 we describe

the formalisms related to well-connectedness and the wire properties of to-sync, to-

port, from-sync, and from-port, and discuss how to apply these formalisms to analyze

module connections. In Section 4.4 we discuss details of the added annotation language

and checker tool implementation. In Section 4.5 we evaluate our technique and tool by

applying the checker to a series of standalone modules as well modularly-constructed

circuits, and conclude in Section 4.6 we conclude.

4.2 Motivation and Related Work

To demonstrate the problem, we use the example of a simple first-in first-out (FIFO)

queue using the ready-valid protocol, as shown in Figure 4.1. The role of the FIFO

queue is to accept input data from one module (at the consumer endpoint), buffer

that data inside its internal state, and then send the data to another module (at the

producer endpoint) upon request. The consumer endpoint consists of a set of wires:

datain contains the data being sent to the FIFO; validin determines whether the incoming

signals on datain represent valid input from the connected module; and readyout is an

outgoing signal indicating whether the FIFO is ready to accept input (i.e., it isn’t full).

Similarly, the producer endpoint consists of another set of wires: dataout contains the
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Figure 4.1: Normal FIFO queue. The consumer endpoint receives data from onemodule,
and the producer endpoint sends data to another module.

data being produced by the FIFO and read from another connected module; validout

determines whether the outgoing signals on dataout represent valid data from the FIFO

(i.e., it isn’t empty); and readyin is an incoming signal indicating whether the connected

module is ready to receive data from this FIFO.

We have left the internals of the FIFO opaque (as they may realistically be to a user);

the details do not matter for our purposes except to note that each FIFO endpoint is

combinationally independent of the other. In other words, every path between the

endpoints is interrupted by some state inside the FIFO, so that an action at one endpoint

cannot affect the other endpoint within a single cycle.

A FIFO queue of this kind is often called a “universal interface” because it can be

placed between any two modules without danger of ill effects due to timing issues.

However, for various reasons (such as efficiency) a normal FIFO queue may not be

appropriate. A forwarding FIFO improves efficiency by allowing data entering in one

clock cycle to be immediately sent out in the same clock cycle if the FIFO is empty. An

abstract depiction of this module is shown in Figure 4.2.

The important points for our purposes are that: (1) the module interface (i.e., the

ready-valid endpoint specification) is unchanged from the normal FIFO, so that from a
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Figure 4.2: Forwarding FIFO queue.

module connection standpoint the two are indistinguishable; and (2) the endpoints are

no longer combinationally independent because there is a combinational path from one

endpoint to the other, enabling the data forwarding that is the whole point of the new

module. Here’s a closer look at the combinational logic used for assigning to validout

across the two FIFO modules (where countreg is a register containing the number of

enqueued elements):

• Normal:

validout F (countreg > 0)

• Forwarding:

validout F (countreg > 0) ∨ (validin ∧ readyout)

This combinational dependence between the endpoints means that designers may

inadvertently cause a combinational loop when they wire modules together. In fact,

the problem may not even arise due to direct interactions between the queue and the

modules connected to its endpoints, but rather due to indirect interactions mediated by

yet other modules. We show an example of a problematic circuit in Figure 4.3.
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Figure 4.3: Forwarding FIFO connected to other modules causing a combinational loop
(in yellow). Only pertinent IO ports have been shown for each module.

Here we have three modules: a normal FIFO, a forwarding FIFO, and some module

X. In this contrived example, the normal FIFO sends a signal to module X that is some

combinational function of its validin wire (here, a direct connection); module X sends

some combinational function of its input to the forwarding FIFO’s validin, which (as

previously discussed) is a combinational input to the forwarding FIFO’s validout, which

in turn is wired to the normal FIFO’s validin. If the forwarding FIFO were instead a

normal FIFO (which at a module connection level looks the same) then this would

be fine, but since it is not this circuit contains a combinational loop. Detecting and

understanding the cause of the loop requires reasoning about the internal details of

three different modules.

We note that detecting the existence of the combinational loop is simple once the

HDL program has been synthesized to a netlist: simply perform a standard cycle

detection algorithm. Verilog [106] synthesis tools such as the linter in Verilator [107]

and the Yosys synthesis suite [108] andHDLs such as Chisel [109] and PyRTL [110, 111]

can provide warnings about loops during synthesis. However, relying on loop detection
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at synthesis time has several drawbacks. First, gate-level netlists take a long time to

produce and are significantly larger (47X larger in one example we studied), since high-

level and multi-bit operations have been transformed into sets of simple 1-bit primitive

gates. Second, these detection systems aren’t infallible: under certain combinations

of flags or optimizations, tools like Yosys fail to detect loops or silently delete them,

“successfully” synthesizing the offending circuit. Third, once the loop is detected after

synthesis, it is entirely up to the designer to trace the synthesized loop back to the

relevant modules and interactions in the original HDL program.

The RTL, on the other hand, has fewer gate dependencies to analyze while still

representing the same dataflow graph. Going up one level of abstraction, the behavioral

level describes the same system algorithmically, making it even easier to take advantage

of high-level constructs for determining dependency. Thus, our goal is to raise the

level of abstraction for detecting loops up to the HDL module level in order to give

the designer maximum information and context, to avoid loops more easily, and to

detect loops sooner in the design process. An apt analogy is the difficulty in trying to

determine the cause of an assembly-level link time error versus one presented at the

source level; we aim to do the latter for HDLs.

There do exist HDL-level tools to check certain kinds of properties, for example Sys-

temVerilog Assertions (SVA) [112], Property Specification Language (PSL)/Sugar [113,

114], and Open Verification Library (OVL) [115]. These frameworks facilitate the spec-

ification of temporal relationships between wires, which are checked via simulation or

model checking rather than statically at design time. These tools can express properties

about the relative order in which things occur but not the reasons why they occur.

Since our analysis is concerned with the exact causes of events (i.e., combinational

dependencies between wires), we believe from our experience using these tools that

they are not suitable for our purpose.
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There is additionally a long history of using higher-level abstractions to describe

hardware formally [116, 117] and of using richer type systems [118] and functional

programming techniques [119, 120, 121, 122]. DSLs like Murφ [123] and Dahlia [124]

target specific use cases like protocol descriptions or improved accelerator design, while

high-level synthesis (HLS) techniques [125, 126] translate subsets of C/C++ to RTL.

Other HDLs [127] like PyMTL [128], Cλash [129], Pi-Ware [130], HardCaml [131],

BlueSpec [132], and Kami [20] also use modern programming language techniques

to overcome some of the issues that arise when writing in traditional HDLs [133, 134];

like many of them, we focus on improving the register-transfer level design process by

creating better and more expressive abstractions.

4.2.1 BaseJump STL

The closest work to our own is BaseJump STL [135, 136]. Their work discusses the

requirements for creating a library of hardware modules (analogous, in their words, to

the C++ standard template library) and introduces some informal terminology to help

describe module interfaces and promote properties such as well-connectedness. They

draw upon the principles of latency-insensitive hardware design [137, 138, 139, 140]

but aim for a less restrictive model.

BaseJump STL informally defines the notions of helpful and demanding module

interface endpoints (such as the ready-valid endpoints from the previous FIFO example).

The distinction is based onwhether an endpoint is able to offer up datawithout “waiting”

for input. For the ready-valid protocol, a helpful producer offers validout upfront while a

demanding producer waits for readyin before computing and emitting validout. Similarly,

a helpful consumer offers readyout upfront while a demanding consumer waits for

validin before computing and emitting readyout. BaseJump STL creates a taxonomy of
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interface connections based on the various combinations of helpful and demanding

endpoints. They note that the only unsafe combination is a demanding-demanding

connection, which would directly lead to a combinational loop.

The problem with BaseJump STL’s approach is that it considers module endpoint

connections in isolation: the notion of dependence inherent in the demanding and

helpful classifications only considers wires that directly participate in the connection.

However, this isn’t sufficient to guarantee detection of combinational loops, as we

have shown with our previous example of a problematic circuit in Figure 4.3. In that

example, the forwarding FIFO’s producer endpoint is considered helpful because

validout is offered without needing to wait on readyin. The normal FIFO’s consumer

endpoint is considered helpful because readyout doesn’t wait on validin. According

to BaseJump STL’s model, these modules have a helpful-helpful connection and are

therefore safe. But aswe have demonstrated, the design is actually faulty due to the third

module in the circuit and how it interacts with the connection between the forwarding

and normal FIFOs.

We discovered the issues with BaseJump STL’s notions of helpful and demanding endpoints

when we attempted to formalize them and prove that they were adequate to detect combinational

loops at the HDL module level of abstraction. Our experience led us to conclude that in

order to guarantee well-connectedness, we need to: (1) be able to reason about module

endpoints based on wire dependencies between the input and output wires within a

module; and (2) using only the resulting endpoint annotations, reason about an entire

circuit at the module level to resolve possible loops introduced by interactions between

multiple modules.
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4.3 Wire Sorts and Well-Connectedness

In this section we define our notion of wire sorts, formalize the property of well-

connectedness using these sorts, and prove a set of properties that can be used to demon-

strate that a circuit composed of independently designed modules is well-connected.

Finally, we show exactly how our definitions contrast to BaseJump STL’s notions of

helpful and demanding endpoints and how our approach avoids the problems that

BaseJump STL encounters.

4.3.1 Defining Basic Domains

We formally define a set of basic domains that collectively comprise a circuit com-

posed of independent modules, so that we can precisely define wire sorts and well-

connectedness and prove that a well-connected circuit has no combinational loops. Our

formalisms and techniques apply to synchronous digital designs, and we assume for

simplicity that there is a single clock driving all stateful elements (both are properties

of the most commonly found designs).

A wire is denoted by wσ where σ ∈ {const, reg, in, out,

basic}. A constant wire wconst produces a 0 or 1, an input wire win serves as input

into a module, and an output wire wout serves as output from a module. Registers are

stateful elements that are latched each cycle according to the same shared clock; the wreg

wires represent the outputs of these registers. Basic wires wbasic are used to connect or

combine these wires together via nets. A net is a tuple (−→wσ,wσ, op) representing a gate,

with multiple wires −→wσ coming into the gate, a single wire wσ coming out of the gate,

and a bitwise logical operation op denoting the type of gate such that wσ = op(−→wσ).

A module M is a tuple (−−→win,−−−→wout,
−−→net) composed of sets of input wires, output wires,

and nets representing a directed acyclic graph (DAG); in this DAG, the nets are nodes,
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and the outputs of the nets are the forward edges in the graph. The input and output

wires form the module’s external interface. Given a module M = (−−→win,−−−→wout,
−−→net) we will

use the shorthand M.inputs, M.outputs, and M.nets to mean −−→win, −−−→wout, and
−−→net, respectively.

A circuit C is a tuple (
−→

M,
−−−−−−−−−→
(wout,win)) composed of a set of modules C.modules and

the connections C.conns between their inputs and outputs. Given M1,M2 ∈ C.modules

and two wires wout ∈ M1.outputs and win ∈ M2.inputs, we use wout →C win to mean

that wout is directly connected to win, i.e., (wout,win) ∈ C.conns. We define the function

module(win,C) = M iff win ∈ M.inputs ∧ M ∈ C.modules.Without loss of expressiveness,

we assume that one module’s outputs are always connected directly to another mod-

ule’s inputs.2 Note that a circuit C and its set of modules C.modules can essentially

define a larger module composed of submodules. A circuit composed of many of these

“supermodules” connected together in turn makes an even larger module, ad infinitum.

Thus the intra- and intermodular analyses we discuss in the following sections are fully

generalizable to the notion of submodules common in popular HDLs.

4.3.2 Defining Combinational Reachability

We define two different levels of combinational reachability: one intra-modular that

can be computed for each module independently and one inter-modular that involves

the entire circuit.

Given a module M containing a wire wσ, we define the combinationally reachable set

reachable(M,wσ) as the set of wires reachable from wσ in M.nets without going through

any wire wreg; in other words, the transitively reachable wires that don’t go through

any registers (state).

We can now define two terms that will be important for determining combinational
2If there is any extra-modular logic between modules, one can wrap that logic into its own module to

trivially meet this condition.
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Figure 4.4: Example for computing the output-port-set and input-port-set of a module
M. The output-port-set of input w4in is {w2out} and ∅ for the other inputs. The input-
port-set of w2out is {w4in} and ∅ for w1out.

(a) A from-sync wire w1out
connected to a to-sync wire
w2in.

(b) A from-sync wire w1out
connected to a to-port wire
w2in.

(c) A from-port wire w1out
connected to a to-sync wire
w2in.

Figure 4.5: Connections between to-sync or from-sync wires cannot result in combina-
tional loops.
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reachability at the module level without needing the internal details of the relevant

modules: output-port-set and input-port-set. The output-port-set is relevant for mod-

ule inputs: given module M and input win, the output-port-set output-ports(M,win) is

the set of module output wires that are combinationally reachable from that input wire.

In other words, output-ports(M,win) = reachable(M,win) ∩ M.outputs. Similarly, the

input-port-set is relevant for module outputs: for an output wire wout of module M,

the input-port-set input-ports(M,wout) is the set of module input wires that combi-

nationally reach that output wire. In other words, input-ports(M,wout) = {win | win ∈

M.inputs,wout ∈ output-ports(M,win)}. These sets need only be computed once per

module definition (regardless of how many instantiations are used in a circuit).

To illustrate these definitions consider the module diagram in Figure 4.4. In this

module, whichwe’ll call M, the output-port-set of inputw4in is output-ports(M,w4in) =

{w2out}, while the output-port-set of each of the inputs w1in,w2in,w3in is ∅. The input-

port-set of output w1out is ∅, while the input-port-set of w2out is input-ports(M,w2out) =

{w4in}.

Given a circuit composed of multiple modules along with the output-port-set and

input-port-set for each input and output wire of each module, we can compute inter-

modular combinational loops without needing to inspect the internals of any module.

The transitive forward reachability of any output wire amounts to a fixpoint compu-

tation involving the output-port-sets of the modules in the circuit; while tracing a

path from between wires, if a module input wire is encountered, skip over its mod-

ule’s internal logic by continuing with the output wires in its output-port-set. We use

w1{Cw2 to denote that wire w1 transitively affects wire w2 in circuit C and call{C the

TransitivelyAffects relation. This computation is shown in Algorithm 1.
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Algorithm 1: TransitivelyAffects
Data: wout,win,C
Result: True if output wire wout of one module affects input wire win of another

module in circuit C, otherwise False.
1 begin
2 a← ∅;
3 c← {w1in | (wout,w1in) ∈ C.conns};
4 while c , ∅ do
5 w1in ← pop(c);
6 if w1in = win then
7 return True;
8 if w1in ∈ a then
9 continue;

10 M ← module(w1in,C);
11 forall w1out ∈ output-ports(M,w1in) do
12 c← c ∪ {w2in | (w1out,w2in) ∈ C.conns};
13 a← a ∪ {w1in};
14 return False;

4.3.3 Wire Sorts

We can now formally define the novel set of sorts for module input and output wires,

a key contribution of this paper. An input wire win is to-sync if output-ports(M,win) =

∅ and is to-port otherwise. An outputwirewout is from-sync if input-ports(M,wout) = ∅

and is from-port otherwise. The to-sync, to-port, from-sync, or from-port designation

of awire is its sort, and this set of sorts is sufficient to label all module ports. In Figure 4.4,

the sort of input wires w1in,w2in,w3in is to-sync while the sort of w4in is to-port. Of the

outputs, the sort of w1out is from-syncwhile the sort of w2out is from-port.

Note that an input wire of sort to-sync cannot be involved in a combinational loop,

nor can an output wire of sort from-sync. By definition, these wires terminate or

originate in some stateful or constant-valued element, and therefore module interface

wires of these sorts can be freely connected to other modules safely without regard to
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the connected module’s interface wire sorts or the rest of the circuit. This leads us to

our first property.

Property 1. Two connected wires wout and win cannot be involved in a combinational loop if

wout is from-sync or win is to-sync.

Summary. Given a module M1 such that wout ∈ M1.outputs, if wout is from-sync, then

input-ports(M1,wout) = ∅, meaning it does not combinationally depend on anymodule

input. Similarly, given a module M2 such that win ∈ M2.inputs, if win is to-sync, then

output-ports(M2,win) = ∅, meaning it does not combinationally affect any module

output. □

In Figure 4.5a, from-sync wire w1out is connected to to-sync wire w2in, while in

Figure 4.5b, it is connected to to-port wire w2in. We can see that it doesn’t matter what

sort of input w1out connects to, since there is at least one stateful element shielding

w1out from being fed into itself combinationally: the stateful elements of M1 in both

figures and additionally the stateful elements of M2 in Figure 4.5a. In both cases, it

doesn’t matter what modules M3 . . .Mn may do or any other output M1 may have that

could possibly feed into them. Similarly, in Figure 4.5c, because from-port wire w1out is

connected to to-sync wire w2in, we can know even without analyzing the entire circuit

that this particular connection is safe.

4.3.4 Defining Well-Connectedness

There are cases, like our previous example of a forwarding FIFO queue in Section 4.2,

where it doesn’t make sense to require that module interface wires be only to-sync or

from-sync. Relaxing this requirement means we cannot rely solely on Property 1 for

establishing safety between wires, and so we must more precisely define our notion of

inter-wire safety as follows:
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(a) A from-port wire w1out con-
nected to a to-port wire w2in,
which through interactions with
other modules can be shown
to not result in a combinational
loop.

(b) A from-port wire w1out
connected to a to-port wire
w2in resulting in a combina-
tional loop.

(c) A from-port wire w1out
connected to a to-port wire
w2in, which cannot be deter-
mined to be well-connected
until the entire circuit has
been completed.

Figure 4.6: Connections between from-port or to-port wires might result in combina-
tional loops.

Definition 1 (Wire Well-Connectedness). Given a circuit C and two modules M1,M2 ∈

C.modules (where M1 may be M2), an output wire wout ∈ M1.outputs, and an input wire win ∈

M2.inputs such thatwout →C win,wout iswell-connected towin iff ∀w1 ∈ input-ports(M1,wout),

∀w2 ∈ output-ports(M2,win), w2 ̸{Cw1.

It is straightforward to show that it satisfies our desired safety property:

Property 2. The connection between two wires wout and win that are well-connected to one

another does not introduce a combinational loop.

Summary. By definition, all of the input wires w1 in M1 that combinationally affect wout

are present in its input-port-set. Likewise, by definition, all of the output wires w2 in M2

that are combinationally affected by win are in its output-port-set. If it is impossible to

transitively trace any output wire w2 through the nets it combinationally affects to any

input wire w1 that wout is awaiting, then no combinational loop has been introduced by

wout → win. □

We illustrate this property in Figure 4.7 below.

Any wires of sort to-port or from-port are potential problems, so we cannot in gen-

eral determine safety without inspecting the entire circuit. For example, Figure 4.6a and
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Figure 4.7: Illustration of the Wire Well-Connectedness definition. Given a circuit C,
well-connectedness for a connection (wout,win) ∈ C.conns occurs when there does not
exist an output port w2 in win’s output-port-set that is transitively connected ({C) to
any wire w1 in wout’s input-port-set.

Figure 4.6b both show two connected modules with a from-port output wire connected

to a to-port input wire, but in the former case it does not result in a combinational

loop while in the latter it does. Note, however, that we still do not need to inspect the

internals of any modules as long as we know the sorts of their interface wires.

We can distinguish between the examples in Figure 4.6a and Figure 4.6b by defining

a safe class of connections to from-port sorts, called safely from-port:

Definition 2 (Safely From-Port Wires). A from-port output wire wout connected to a

to-port input wire win is called safely from-port with respect to win if wout and win are

well-connected according to Definition 1.

A safely from-port output wire combinationally depends on some module input

wires (and hence its value is not valid until those inputs have propagated to the output

wire later in the clock cycle) but still guarantees the absence of combinational loops

with respect to certain connected wires. In Figure 4.6a, the dependent output wire

w1out is safely from-port with respect to w2in, and hence the overall circuit is well-

connected since w1out is not connected to anything else. In contrast, in Figure 4.6b the

from-port output wire w1out is not safely from-port and hence the overall circuit is not

well-connected.
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Determining whether a wire is safely from-port or not requires the complete circuit

in order to compute the TransitivelyAffects relation. Figure 4.6c demonstrates this fact.

We define a circuit composed of a set of modules such that all module interface wires

are connected to be a complete circuit. A well-connected circuit is a complete circuit

that has no combinational loops. This definition brings us to our final property:

Property 3 (Circuit Well-Connectedness). A complete circuit is well-connected if and only

if all from-port output wires in the circuit are safely from-port with respect to the to-port

input wires to which they are connected.

Summary. The forward implication is that in a complete, well-connected circuit C, all

from-port output wires are safely from-port. By definition, a well-connected circuit

does not contain any combinational loops. If there exists some module M1’s from-port

output wire wout that is not safely from-port, then by the definition of safely from-port

(Definition 2) either:

1. Wire wout is not connected to any other wire. But this contradicts the fact that the

circuit must be complete.

2. Wire wout is connected to wire win of some module M2 and there exist wires

w1 ∈ input-ports(M1,wout), w2 ∈ output-ports(M2,win) such that w2{Cw1. By

the definition of{C this means that there is a combinational loop in the circuit.

But this contradicts that the circuit is well-connected.

Therefore by contradiction the forward implication holds. The reverse implication is

that if all from-port output wires are safely from-port, then the complete circuit is well-

connected. Since the circuit is complete, every input and output wire is connected to

some output or input wire, respectively. For a given connection, if either the output wire

is from-sync or the input wire is to-sync then they cannot be part of a combinational
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loop. So the only case that we need to worry about is if the output wire wout is from-port

and the input wire win is to-port. Assuming that wout is safely from-port, this means

that by Definition 2 it must be true that wout and win are well-connected according

to Definition 1. This property directly implies that these wires cannot be part of a

combinational loop. Therefore the forward direction holds. □

4.3.5 Putting It All Together

Given the definitions and properties stated above, we can divide checking a circuit

for well-connectedness into three stages:

• Stage 1. At the time each module is designed, automatically compute the sort of

each input and output wire. Annotate each wire with its sort and, for a from-port

or to-port wire, its input-port-set and output-port-set, respectively.

• Stage 2. When modules are connected during circuit design, any connections

involving a from-sync or to-syncwire can be marked as safe immediately.

• Stage 3. Either periodically during circuit construction (useful when using interac-

tive HDLs with a tight feedback loop) or only once when the circuit is completed:

for each from-port output wire connected to a to-port input wire, check whether

the output wire is safely from-port with respect to the input wire.

This process neatly encapsulates the necessary information about the module’s

internal details into its interface and allows for checking well-connectedness in the final

circuit while treating each module as a opaque.
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4.3.6 Comparison to BaseJump STL

We can relate the informal notions given by BaseJump STL (described in Section 4.2)

to our more precise definitions given here and thereby pin down exactly where the

BaseJump STL notions become problematic. BaseJump STL says that an endpoint

is demanding if it needs the other endpoint’s input signal (validin for the consumer

endpoint, readyin for the producer endpoint) before computing its own output signal

(readyout for the consumer endpoint, validout for the producer endpoint) and is helpful

otherwise.

Using our definitions, we can formulate these notions precisely. We are given a

module M with producer endpoint (readyin, validout, dataout) and consumer endpoint

(readyout, validin, datain). The producer endpoint ishelpful iff readyin < input-ports(M, validout),

otherwise it is demanding. This says nothing about the presence or absence of M’s

other inputs in input-ports(M, validout), meaning validout could be from-port and thus

potentially cause a loop due to other module connections. The consumer endpoint is

helpful iff validin < input-ports(M, readyout), otherwise it is demanding; again, this

does not preclude readyout from being from-port.

According to the BaseJump STL work, the only potentially problematic connection

is between two demanding endpoints; all other types of connections are safe while

demanding-demanding connections should be forbidden. However, according to

our analysis above this is not a sufficient condition for correctness. It is possible (as

demonstrated in Section 4.2) for a helpful-helpful connection to create a combinational

loop; this is because the helpful and demanding endpoint classifications focus only

on direct connections between two modules and do not consider the possibility of

combinational loops via other modules not directly involved in the connection.
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4.3.7 Extension to Synchronous Memory Reads

The basic set of domains described in Section 4.3.1 omitsmention ofmemories. Mem-

ories are a special case in digital logic; their semantics partially depend upon whether

they are synchronous or asynchronous. Synchronous memories are often preferable in

order to be able to synthesize a design into efficient hardware, but using them imposes

additional conditions on the design. For example, one class of synchronous memories

requires that the read operations are able to start at the beginning of the clock cycle. What

this often means is that the designer must make sure that the read address port, raddrin,

is fed directly from a register.

Take as an example the module-memory interconnection in Figure 4.8a. At first

glance, this condition requires that any external module’s output wire wout connected

to raddrin be from-sync. However, this still doesn’t meet the required conditions for

synchronous memories; our definition of from-sync allows combinational logic to

exist between the source register from which the from-sync data originates and its

destination. In order for the data on wout to be available immediately at the beginning of

the clock cycle, it must not go through any combinational logic at all (since all gates have

propagation delay), and so we find that we must create a from-sync subsort, which

we’ll call from-sync-direct.

A from-sync-direct output wire wout is simply one where reachable(M,wout) = ∅.

By our definition of reachable in Section 4.3.2, this means that wout is connected only

directly to registers, with no intermediate combinational logic. In Figure 4.4, wire w1out

could thus be labelled from-sync-direct and qualify as being able to be connected to a

synchronous memory’s input wires. Its data is available at the start of the clock cycle

because its signal doesn’t need to propagate through any attached combinational logic.

A from-syncwire that isn’t from-sync-direct is said to be from-sync-indirect.
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(a) The read address line raddrin of certain
synchronous memories must be connected to
from-sync-direct wires like wout.

(b) Other synchronous memories require
dataout be connected to to-sync-direct input
wires like win feeding directly to a register.

Figure 4.8: Wire sorts for synchronous memories.

There are other forms of memories where synchronous requirements are placed on

certain outputs, rather than inputs. In these memories, the designer must ensure that

the dataout wire is fed directly into a register, as shown in Figure 4.8b. This naturally

leads to an input subsort for describing such conditions, which we call to-sync-direct; a

to-sync-direct input wire win is one where reachable(M,win) = ∅. A to-sync wire that

isn’t to-sync-direct is said to be to-sync-indirect.

By providing these additional sorts, designers can communicate the interface re-

quirements of modules using synchronous memories, making libraries of hardware

components more accessible and easier to use. Furthermore, the particular aspect of

timing information provided by these new subsorts can be used as part of clock cycle

determination and place-and-route post-synthesis of standard EDA workflows. Thus,

this sort taxonomy, now at for inputs: to-sync (with its subsorts to-sync-direct and

to-sync-indirect) and to-port; and for outputs: from-sync (with its subsorts from-sync-

direct and from-sync-indirect) and from-port, has a wide range of applications and

can be potentially expanded even further.
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4.4 Implementation ofModularWell-ConnectednessChecks

We augmented the PyRTL HDL [110] to implement lightweight annotations and

design-time checks according to the formal properties that we have described of the

original four wire sorts (to-sync, to-port, from-sync, and from-port). PyRTL does not

natively support a module abstraction, so we first modified the language by adding a

Module class that isolates a modular design and exposes an interface consisting of input

and output wires.3

Our formalism made two simplifying assumptions. First, it assumed that all logic

is contained inside modules. For developer convenience, we eased this restriction to

allow for arbitrary logic to exist between modules. We tweaked the TransitivelyAffects

relationship ({C) to account for combinational paths through this extra-modular logic.

Second, it treated all wires as one bit in width. At the HDL level, it is much more

convenient to group related one-bit wires, especially input and output ports, into single

n-bit wire vectors. For native PyRTL designs (but not BLIF import), the output-port-set

or input-port-set of each port wire vector becomes the union of the output-port-set or

input-port-set of its constituent wires; thus we are overly conservative because single-bit

dependencies are not tracked, but maintain soundness by continuing to be able to detect

all combinational loops.

The well-connectedness implementation itself consists of (1) a sort inferencer that

automatically computes the sorts of a module’s input and output wires at module

design time; (2) lightweight syntactic annotations that allow a designer to (optionally)

specify what they believe the sorts should actually be; and (3) a whole-circuit checker

that automatically triggers when needed to verify that a circuit composed of multiple

modules is well-connected.
3Our PyRTL modifications and the complete implementation of our tool are available at https://

github.com/pllab/PyRTL/tree/pldi-2021.
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The computed sorts are then checked against any existing designer annotations

to ensure that the computed sorts match the designer’s expectations; any unascribed

ports are labeled with their computed sorts. We require sort ascriptions, where the

output-port-set or input-port-set are fully specified by the user, for all the ports of

opaque modules, since there is no internal logic to use for calculating these sorts. Once

a module has its wire sorts, these sorts make it quicker to determine intermodular

connections because they facilitate re-use: every instantiation of the same module in

the larger design reuses the same wire sort information.

An interesting question during circuit design, as modules are being composed, is

when exactly to check well-connectedness. We would like to highlight problems as early

as possible instead of waiting until the entire circuit is complete. However, we also

want to minimize the cost of constantly checking well-connectedness during the design

process. As such, our tool can either check for well-connectedness after all modules have

been connected or instead whenever a newly formed connection between two modules

meets the following condition: the connection’s forward combinational reachability set

includes a to-port input, and its backward combinational reachability set contains a

from-port output. This condition is cheap to track by saving and updating information

about each wire’s reachability as wires are added to the design, and it guarantees that

(1) a check is never done unless a problem could potentially be found; and (2) an actual

problem is found as soon as possible.

4.5 Evaluation

We evaluate our tool in five parts: (1) an application to a number of SystemVerilog

modules provided by the BaseJump STL; (2) an application to several components from

the OpenPiton Design Benchmark; (3) a case study applying the tool to the design of a
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multithreaded RISC-V CPU; (4) a comparison of our tool to standard cycle detection

during synthesis; and (5) a discussion of the scalability and asymptotic complexity of

the tool.

4.5.1 BaseJump STL Modules

We begin with an evaluation of a number of the SystemVerilog modules provided

by the industrial-strength BaseJump STL library. This evaluation serves as a baseline

sanity check allowing us to verify that we can successfully assign the correct sorts to

module interfaces.

We ran our annotation framework successfully on 144 unique modules from the

BaseJump STL as found in the BSG Micro Designs repository [141], a repository con-

taining a large number of BaseJump STL modules parameterized and converted into

Verilog. Each module was instantiated one to four times to test various combinations of

its parameters (e.g. data bit width, address width, queue size, etc.), so that we analyzed

533 modules in total. Since our technique is currently only applicable to synchronous,

single-clock designs, we were unable to analyze 5 modules that relied on asynchronous

or multi-clock constructs.

We converted each top-level module and their submodules into the flattened BLIF

format[142] via Yosys version 0.9 and imported the result into PyRTL. The average

size of each module in BLIF was 1.7 MB, with an average number of primitive gates of

19,981, an average number of inputs and outputs per module of 6, and an average time

for inferring all of the interface sorts for each module of 361 milliseconds. We ran all

of these experiments using PyRTL on a computer with a 1.9 GHz Intel Xeon E5-2420

processor and 32 GB 1333 MT/s DDR3 memory.

A representative subset of these BaseJump STL modules is shown in Table 4.1:
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Figure 4.9: Tracing a path through the parallel-in serial-out (PISO) shift register shows
the dependency between yumi_i and ready_oout, making connections involving either
of their respective endpoints potentially unsafe.

a first-in first-out queue, a parallel-in serial-out shift register, a serial-in parallel-out

shift register, and cache DMA. Information on the sizes, wire sort annotations, and

annotation time for all 533 modules is found in the supplementary material.

We highlight in particular the parallel-in serial-out (PISO) shift register as an inter-

esting case (see Figure 4.9). Three of its four inputs are to-sync, while yumi_i is to-port

(specifically, its output-port-set contains the output ready_o). We can see the details

by looking at the logic for output ready_o:

ready_oout F (statereg = stateRcv)∨

((statereg = stateTsmt)∧

(shi f tCtrreg = nSlots − 1) ∧ yumi_iin)

According to the BaseJump STL paper, the consumer endpoint of this module
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(to which ready_oout belongs) is helpful because ready_oout does not combinationally

depend on valid_iin (an input wire in the consumer endpoint). Thus, according to

them, this module can safely be connected to any other module. However, our own

analysis more precisely shows that while it is true that ready_oout doesn’t depend on

other consumer endpoint wires, it does require other module input (in particular

yumi_iin, which is part of the producer endpoint). This fact means that the PISOmodule

connections may or may not be safe depending on the sorts of the interfaces to which it

is directly or transitively connected.

Notably, after personal correspondence in which we reported the issue, the authors

of the BaseJump STL PISO module updated it so that, according to our terms, yumi_iin

is now to-sync and ready_oout is now from-sync.4 This shows that designers care about

the precise behavior of these interfaces and that an analysis that annotates wire sorts

and verifies their interconnections is a useful thing to have.

4.5.2 OpenPiton Modules

We also used our analysis on a completely separate body of work: the OpenPiton

Design Benchmark (OPDB), based on the OpenPiton manycore research platform [143,

144]. OPDB is interesting because it provides modules of a variety of scales and with

different configuration options pre-generated per module. We were also interested in

these OpenPiton designs due to anecdotes from the developers of OpenPiton related

to issues they experienced with compositionality. In one instance, developing a like-

for-like replacement for an existing component led to combinational loops that went

undetected until final integration and synthesis due to minor mismatches in interfaces

and test configurations. In another, a hardware generator produced combinational
4See https : / / github . com / bespoke-silicon-group / basejump _ stl / commit /

67830f05ffce1333c7b790600530da0681af74fe
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Table 4.2: Size (in primitive gates), wire sort inference time (in seconds), and number
of IO ports of 17 OPDB modules.

Module Prim. Gates Time (s) Ports
dynamic_node 29,918 0.759 35
fpu 168,525 1.456 16
ifu_esl 15,602 1.362 40
ifu_esl_counter 310 0.001 5
ifu_esl_fsm 2,299 0.040 34
ifu_esl_htsm 524 0.012 30
ifu_esl_lfsr 213 0.001 6
ifu_esl_rtsm 170 0.005 24
ifu_esl_shiftreg 208 0.001 4
ifu_esl_stsm 267 0.016 26
l2 1,088,384 15.128 16
l15 1,518,073 30.176 71
pico 36,479 0.245 24
sparc_ffu 104,966 0.723 77
sparc_mul 20,702 0.260 7
space_exu 320,397 10.203 132
sparc_tlu 650,364 8.753 214

loops for only particular values of a parameter designed to change the size of a module,

and those loops would require the composition of as many as seven modules to come

into existence.

To process the OPDB designs, we followed the same Yosys Verilog-to-BLIF synthesis

step as with the BaseJump STL designs, excluding some with asynchronous or multi-

clock constructs. Our selected OPDB designs include a floating-point unit, network-

on-chip router, and two caches, among others. Table 4.2 shows the OPDB designs we

selected, their sizes in number of primitive gates, the time taken to infer the wire sorts

of the design, and the number of input/output ports. Of the 17 designs we processed,

the average number of gates was 232,788, while the smallest (ifu_esl_rtsm) had just

170 gates and the largest (l15) had more than 1.5 million gates. The designs had an

average of 44 ports with the fewest ports (ifu_esl_stsm) being just 4, while the design
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Table 4.3: A comparison of cycle detection during synthesis (Yosys) versus our tool
using wire sorts on large OPDB designs. Each unique module type only needs to be
analyzed once; additional (non-unique) instantiations reuse the calculated sorts. The
number of primitive gate differs from Table 4.2 because these are unflattened, and thus
unoptimized, designs.

Module Prim. gates
(hier. BLIF)

Cycle det. time (s) Speedup Sort infer.
time (s)

Submodules
Yosys Ours Total Unique

fpu 189,452 46.42 3.11 14.92x 0.845 3530 118
sparc_ffu 105,688 11.30 1.00 11.30x 0.397 208 51
sparc_exu 331,452 22.81 8.65 2.63x 0.989 737 92
sparc_tlu 761,538 108.54 5.82 18.64x 0.813 777 128
l2 1,176,219 361.04 10.64 33.93x 13.80 157 45
l15 1,549,475 643.45 20.81 30.92x 7.86 68 26

with the most (sparc_tlu) had 214. The larger scale of these designs also skews to a

longer average wire sort inference time, at 4.067 seconds, with a minimum of 0.001s

and a maximum of 30.176s. We describe the asymptotic complexity of this operation in

Section 4.5.5.

4.5.3 RISC-V CPU

For a more holistic case study, we implemented a multithreaded single-cycle RISC-

V [145, 146] CPU (RV32I base integer instruction set) in PyRTL. The CPU consists of 11

modules in total; the total number of primitive gates for the entire design, configured

for five threads and five pipeline stages, is 229,011 gates. Our tool spent an average of

13.5 milliseconds on each module inferring its interface sorts; it took on average 162.7

milliseconds to determine all of the sorts, with a lower bound of 148.9 milliseconds

and an upper bound of 194.2 milliseconds, at a rate of 298 nanoseconds per primitive

gate. Once all the modules were connected, it was able to correctly check all the inter-

module connections in an average of 67.1 milliseconds, with a lower bound of 62.5

milliseconds and an upper bound of 77.3 milliseconds. Information on the sizes, wire
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sort annotations, and annotation times for the RISC-V submodules can be found in the

supplementary material.

4.5.4 Comparison to Loop Detection During Synthesis

In our final analysis, we compared the efficiency of doing cycle detection at the

HDL level via wire sorts versus at the netlist level during synthesis. Finding broken

designs in the wild is difficult because most designers don’t publish broken designs. So

instead, we altered the OPDB Verilog designs slightly by introducing multi-module

loops, importing the largest of them in their hierarchical BLIF format into PyRTL where

our intermodular analysis is done. We then timed how long (1) Yosys takes to find the

cycle during synthesis, (2) our tool takes to determine all interface sorts, and (3) our

tool takes to check for intermodular loops given these sorts. We found that Yosys took

longer to synthesize and find loops than our tool. It was also not straightforward to get

Yosys to tell us these loops exist: depending on the options given, it would optimize

them out or convert them to something else entirely without warning. Our results are

found Table 4.3.

In actual use, we expect the user to write their designs in a modular fashion in a

high-level HDL that can be analysed directly to begin with and to provide wire sort

ascriptions if wanted. This experiment favored synthesis over our technique because

it relied on importing a BLIF file, which has a few downsides. The Verilog-to-BLIF

process converts N-bit ports into N 1-bit ports, meaning the number of ports increased

by a factor equal to the average port bitwidth. The conversion also creates a module

instance for each unique set of parameters used; since BLIF doesn’t offer information

that a module instantiation differs from another only by some parameter, those count

as additional unique modules whose sorts must be calculated.
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Despite this, annotating all modules with their I/O sorts was relatively quick, and

detecting loops via intermodular connections using these sorts was 2.6–33.9x faster

than trying to find them during synthesis at the pure netlist level. We expect that by

analyzing the design in its original form (e.g. Verilog or PyRTL), where the wires stay

bundled together and parameterized module instances can be abstracted over, this

speedup would increase significantly. This is exemplified by our RISC-V case study

mentioned in Section 4.5.3, which was written entirely in PyRTL.

4.5.5 Complexity and Scalability

We describe the asymptotic complexity of the two analysis phases in order to demon-

strate their scalability.

Module Wire Sort Inference

Sort inference takes place once per module definition. For a given module M =

(−−→win,−−−→wout,
−−→net), we must compute the transitive closure of combinationally reachable

output wires for each win ∈ −−→win. Thus the total complexity of computing the sorts for

all input wire sorts is O(| −−→win | · | edges |), where edges =
⋃

net∈M.nets{
−→wσ | (−→wσ,wσ, op) =

net} ∪ M.outputs. Since the to-port/from-port relationship is symmetric, the wire sorts

for outputs can be computed using the previously computed input wire sorts without

traversing the module’s internal wires again.

Circuit Well-Connectedness

The phase to check circuit well-connectedness uses the wire sorts computed by

the module wire sort inference, and it operates only on the module interfaces without

caring how large or complex any individual module might be. It only needs to be run
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Table 4.4: The number of annotations per sort. TS = To-Sync, TP = To-Port, FS =
From-Sync, FP = From-Port.

Source Modules Inputs Outputs
TS TP FS FP

BaseJump STL 144 233 211 178 197
OpenPiton DB 17 347 113 245 56

RISC-V 11 14 33 3 33
Total 172 594 357 426 286

once, after the circuit is complete. The algorithm iterates over each pair of inter-module

input-output connections checking them against the TransitivelyAffects relationship

({C).

Since each input port is connected to only one incoming output wire from another

module, the number of connections is equal to the total number of input ports across

the circuit. Given a circuit C and arbitrary wires wout, win in the circuit, the worst-case

scenario is when the path from wout to win traces through every inter-module connection

before finally reaching the combinational loop. Thus, the TransitivelyAffects computation

has a worst-case complexity of O(| C.conns |). Since we do this check for each connection

pair in C.conns, the total worst-case complexity is O(| C.conns |2).

Distribution of Wire Sorts

We found that sort annotations that our tool assigned to the module ports were

widely distributed, as shown in Table 4.4. Across all 172 modules, to-sync inputs make

up 62.5% of module inputs, compared to 37.5% for to-port inputs. from-sync outputs

make up 59.8% of module outputs, compared to 40.2% for from-port outputs.

The foremost goal of this work was to reduce the number of “late surprises” in

the design process. In these designs, 38.7% of the ports raise the possibility of a “late

surprise” loops because they are to-port or from-port. For the remaining 61.3%, our
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technique has the additional advantage of making the checking process faster, by

eliminating individual wires, or in the case of modules with entirely to-sync/from-sync

IO, entire modules that need to be included in the cycle detection analysis.

4.6 Conclusion

We have presented an approach to creating hardware modules in isolation while

tracking enough information to make checking their well-connectedness in an entire

design feasible and user-friendly. BaseJump STL’s informal approach of commenting

ready-valid endpoints as helpful or demanding is a step in the right direction at

classifying modules with information to help in connecting them at circuit design

time in a plug-and-play fashion, but as we show it falls short in being able to prevent

combinational loops.

Our solution is to provide wire-level information via a taxonomy of sorts: to-sync,

to-port, from-sync, and from-port, allowing for modules to be written in isolation

effectively and still safely connected without knowing their internals. We implemented

our approach in a hardware description language and analyzed real-world designs

(BaseJump STL and the OpenPiton Design Benchmark) as well as a multithreaded

RISC-V CPU implementation, showing that our approach is feasible, effective, and

efficient.
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Chapter 5

PyLSE: A Pulse-Transfer Level Language

for Superconductor Electronics

5.1 Introduction

Superconductor electronics (SCE) are a promising emerging technology for the

post-Moore era due to their low power dissipation, energy-efficient interconnects, and

sub-attojoule ultra-high-speed switching [147]. However, the physical properties that

make SCE so promising also make them difficult to design for. In particular, SCE use a

pulse-based, rather than a voltage level-based, information encoding. This, alongwith the

stateful nature of superconducting cells [148] and the lack of a uniformly agreed-upon ef-

ficient translation from design to implementation, makes it necessary to develop unique

logic gates and design rules [149, 150, 151]. As a result, the superconducting realm

lacks tools and workflows for the rapid prototyping and testing of microarchitectures

and SCE-based applications (see Figure 5.1).

The primary question we seek to answer in this paper is: what is a suitable abstraction

for precisely defining the functional and timing behavior of SCE designs? Our solution is
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Figure 5.1: Unlike the semiconducting realm, superconducting lacks standard cell
libraries and standardized digital design rules, making it difficult to rapidly build and
test microarchitectures and larger applications.

to completely depart from existing hardware description languages (HDLs), taking a

bottom-up approach to build a new Python [152] embedded domain-specific language

(DSL), called PyLSE (Python Language for Superconductor Electronics). We argue

that PyLSE is well tailored to the unique needs of SCE, making it easier to create and

compose cells into correct, scalable systems.

Inspired by the theory of automata [153], we propose a custom finite state machine

(FSM) abstraction, which we call a PyLSE Machine, to precisely describe the func-

tional and timing behavior of SCE cells. This FSM abstraction eliminates the need for

complex and error-prone conditional assignments, commonly found in state-of-the-art

approaches [154], and forms the core our PyLSE language. Through this abstraction,

we also develop a new link between SCE and the theory of Timed Automata [155],

which enables the integration of PyLSE with modern formal verification tools like the

UPPAAL model checker [156]. Overall, the main contributions of this paper are:

• We create the PyLSE Machine, a language abstraction for the formalization of the
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functional and timing semantics of pulse-based circuits (Section 5.3).

• We create PyLSE, a lightweight transition system-based Python DSL for the rapid

prototyping of pulse processing systems, modeled as networks of PyLSEMachines

(Section 5.4).

• We automate the translation of PyLSE Machines to Timed Automata (Section 5.4).

• We build a multi-level framework for the simulation and analysis of PyLSE Ma-

chine systems, which also allows for the integration of abstract behavioral software

models, fostering agile development (Section 5.4).

• We evaluate PyLSE’s capabilities through a series of comparisonswith state-of-the-

art approaches, dynamic checks of SCE designs with stochastic timing behaviors,

and formal verification using UPPAAL (Section 5.5).

5.2 Defining Computation on Pulses

5.2.1 Functional Behavior

Complementary metal-oxide-semiconductor (CMOS) is the dominant technology

of today’s computing landscape. The majority of the tools used to design and fabricate

modern hardware assume an underlying digital logic basically corresponding to the

functionality of basic gatesand n- and p-type field-effect transistors[157]. Because the

CMOS fabrication process is so well-understood, engineers encapsulate the functional,

timing, and physical layout characteristics of these gates into standard cell libraries [158].

In turn, digital designers and computer architects use abstractions of these cells to

create consistent digital design rules that underpin the semantics of hardware descrip-

tion languages [106, 159] and which are used to create microarchitectures and larger
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(a) CMOS: Steady voltage levels encode in-
formation; thus, wires are considered stateful
and the gates can be stateless.

(b) SFQ: Transient pulses encode information;
thus, wires are considered stateless and the
gates should be stateful.

Figure 5.2: Comparing information in CMOS and SFQ.

applications (see the left side of Figure 5.1).

Superconductor electronics, on the other hand, exploit the unique properties of su-

perconductivity [160, 161] to perform computation through the carefully orchestrated

consumption and emission of tiny pulses of magnetic flux. In this realm, Josephson

junctions (JJs), rather than transistors, serve as the basic switching device. While the

quantum nature of such flux exchange is central to the device operation, the computa-

tion performed is strictly classical. Information is moved from logic element to logic

element in the same “feed-forward” way as traditional digital logic. However, the use of

picosecond-scale pulses of single flux quanta (SFQ), rather than sustained voltage levels,

to carry information between logic elements has myriad downstream effects. In CMOS,

information is “held” in the wires connecting gates and registers together; that is, the

voltage level corresponding to a logical 0 or 1 persists as long as the input remains

unchanged (see Figure 5.2a). In SFQ [162], information is encoded via short-lived

pulses and does not persist on the wires; instead, cells1 must be designed to “remember”

that a particular input has arrived (see Figure 5.2b).

The SCE community has traditionally relied on low-level analog models for the

design and analysis of basic SCE cells. Figure 5.3a is one such example, showing the
1We use “cell” and “gate” interchangeably throughout.
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(a) Schematic (b) Mealy machine

Figure 5.3: Schematic and Mealy machine description of the Synchronous And Element.
Labels a arrived and b arrived in the schematic are locations of superconducting
loops holding state and roughly correspond to states in the Mealy machine.

low-level circuit schematic of the Synchronous And Element2. The mechanism these

SCE cells use to “remember” input arrival by storing flux quantum is the inferferometer,

also known as superconducting quantum interference devices (SQUIDs) [163]; labels a

arrived and b arrived indicate the location of these SQUIDS. At a high level, this cell

functions as follows. The arrival of a pulse on A causes flux to be stored in the SQUID

labelled a arrived; similarly, a pulse on B stores flux in SQUID b arrived). When a

pulse arrives on CLK, the flux in either SQUID is read out to another loop involving J7;

if both a arrived and b arrived have been set, the combined flux causes J7 to switch

producing an output on output Q. The flux in the SQUIDs has been expended, causing

the cell to return back to its initial state and receive pulses anew.

With the burgeoning interest of digital designers in SCE, the area is leaving the
2While the details of its construction using inductances and bias currents is beyond the scope of this

paper, we include it show the physical manifestation of state being held in each cell, which informs our
discussion of automata.
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Figure 5.4: Waveform for the Synchronous And Element showing the timing constraints
that must be met for correct operation. Pulses arriving during the hold time 1 or setup
time 2 are erroneous. Assuming their absence, a pulse is produced some propagation
delay 3 after a clock pulse.

confines of domain experts, increasing the need for new abstractions more suitable

for the scalable design and analysis of SCE systems. One abstraction commonly used

to explain the stateful behavior of SCE cells is the Mealy machine [164]. which are

deterministic finite state transducers mapping state-input symbol tuples to new states

and output symbols [165]. This model has been used extensively to model SCE cells

[166, 167, 150, 151, 168, 162] like the Synchronous And Element in Figure 5.3, allowing

digital designers to hide the low-level circuit details of Figure 5.3a in favor of the simpler,

easier-to-use functional model of Figure 5.3b.

5.2.2 Timing Behavior

The schematic shown in Figure 5.3a comes with particular timing behavior as well

as constraints on said behavior, which we visualize using the waveform in Figure 5.4.

One such behavior is propagation delay, defined as the time it takes after a particular
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pulse for an output to appear (see moment 3 ). Two such constraints are setup time

and hold time [169, 170], defined as the intervals before and after the clock, respectively,

where no pulses are expected to arrive. The combination of these latter two times help

define an “input window” for legal inputs; pulses arriving outside this window (such

as at moments 1 or 2 ) run the risk of getting lost or dropped, or causing the cell to

enter a metastable state.

Because Mealy machines lack an explicit notion of time, they fall short when con-

straints on the relative arrival times of inputs must be part of the functional description.

These and other timing restrictions need to be carefully thought through and should

be captured as early in the design process as possible. The time it takes for pulses to

propagate through a system is a first class concern for not only analog circuit designers,

but digital designers and architects as well. A good language abstraction must therefore

be centered around a notion of time and provide mechanisms for (1) easily defining

timing constraints and (2) verifying the absence of violations in the system.

5.3 A Language Abstraction for Superconductor Electron-

ics

5.3.1 Overview of the PyLSE Machine

There are four key pieces of information that must be captured in a new SCE ab-

straction:

1. The time it takes to transition between states

2. The priority order that a given input should be handled if more than one arrives

simultaneously
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3. How long it takes for an output to appear once fired

4. Constraints on when it is legal to receive inputs

We believe that the Mealy machine should be the base of this new abstraction,

but with the timing deficiencies covered in Section 5.2 resolved by augmenting the

machine’s edges. These augmented edges are composed of three parts: the Trigger

(in turn composed of an input, priority, and transition time), the Firing Outputs

(associating each output with its firing delay), and Past Constraints (for specifying

conditions on a cell’s past history of inputs); the details of each are found in Figure

5.5. We require that the machine be fully-specified (i.e. that for all states, there are edges

labelled for all inputs) and call a machine composed of states and these augmented

edges a PyLSE Machine.

Figure 5.5: Anatomy of a PyLSE Machine transition. The arrival of an input pulse on
wire A Triggers the transition from the source to dest state. This transition has priority N
over other simultaneously-triggered transitions originating from source and takes τtran
time to complete; during this period, receiving any inputs is illegal. A pulse for each
output Q in the Firing Outputs set appears on their associated output wire some τfire
time units later. Finally, according to the Past Constraints, if it’s been less than τdist
since the last time an input Bwas received during a previous transition, it is an error.
AN
τtran

is shorthand for AN
τtran
/∅/∅.

To show how the proposed extension transforms a plain Mealy machine, we will

focus on the Synchronous And Element. Figure 5.6 shows the PyLSE Machine for the
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Figure 5.6: PyLSE Machine for the Synchronous And Element. Using transition time,
we can model the hold time τhold and using the past constraints, we can model the τsetup
time. Firing delay directly models the propagation delay τprop

Synchronous And Element, expanded from the original Mealy machine representa-

tion in Figure 5.3b. We’ll dissect the edge (highlighted in gold) moving from state

a and b arrived to idle (CLK0
τhold
/{Qτprop}/{*τsetup}) and show how we can use partic-

ularly subtle and useful features of Figure 5.5 to represent the setup and hold time

constraints and propagation delay of this particular cell.

Transition Time The Trigger portion shows that this transition occurs when CLK is

received and that it takes τhold time units to complete. We make it illegal to receive

other inputs during a transitionary period, so that an edge’s transition time can be used

directly to model the hold time constraint of Figure 5.4, by setting τtran B τhold.

Priorities: The example edge has the highest priority (with a priority of 0 shown in the

Trigger), meaning that if the machine received A, B, and CLK simultaneously, it would

handle the transition associated with CLK first, transition to idle, and then make an
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arbitrary choice between A and B, since both have the same labeled priority of 1 leaving

idle. While it is practically impossible to arrange for SFQ pulses to purposefully arrive

“simultaneously,” it is not uncommon to consider idealized models of gates which have

a delay of either zero, or some small integer. Priorities let the designer identify and

explicitly handle cases of simultaneous arrival in a deterministic manner when desired.

Multi-Output: We require a set of outputs, rather than a single one, in order to

accurately model SFQ cells with more than one output. In the Firing Outputs portion

of the example edge being discussed, the singleton set {Qτprop} indicates that a single

output should fire and take τprop time units to appear; thus, we can model the cell’s

propagation delay by an edge’s firing delay, setting τfire B τprop.

Constraints on the Past: The Past Constraints portion says that when a CLK pulse

arrives, it is an error to have received a pulse on any input (indicated by the * in this

example) within the last τsetup time units. We note that the hold time constraint (repre-

sented as transition time) could also have instead been placed in the past constraints

section of the edges leaving idle, i.e. A1
0.0 leaving idle could have instead been written

as A1
0.0/∅/{CLKτhold} and the transition times involving τhold replaced with 0.0; however,

we feel that using a transition time, which imposes a future-looking constraint on what

inputs can’t be received, sometimes more easily reflects the mental model of the digital

designer, and so offer both forms. Thus, we can model the setup time constraint shown

in Figure 5.4 by setting τdist B τsetup on this and all other edges whose triggering input

is CLK.
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5.3.2 Formalization of the PyLSE Machine

Wewill nowprecisely define PyLSEMachines, their semantics, and how they interact

in larger designs:

Definition 3 (PyLSE Machine). A finite state machine with timed, prioritized transitions, an

output set, and past constraints, whichwe call a PyLSEMachine, is a tuple M = ⟨Q, qinit,Σ,Λ, δ, µ, θ⟩

where

q ∈ Q is a set of states

qinit ∈ Q is the initial state

σ ∈ Σ is a set of input symbols

λ ∈ Λ is a set of output symbols

δ : Q × Σ→ Q × N × R is the transition function

µ : Q × Σ→ P(Λ × R) is the output function

θ : Q × Σ→ P(Σ × R) is the past constraints function

We write M.Σ to extract Σ, and likewise M.Λ for Λ. We call a system modeled using a PyLSE

Machine a pulse-based system.

The first three domains, Q, Σ, andΛ, are similar to a typicalMealymachine definition.

The transition function δ maps a state and input symbol to the next state it should

transition to, a natural number corresponding to the priority of that transition, and a

real number corresponding to the physical time it takes to complete. The output function,

µ, maps tuples of states and inputs to sets of tuples consisting of output symbols and

the time it takes for them to appear (i.e. a firing delay). The past constraints function θ

maps the current state and input to a set of input—real number tuples, each indicating
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Transition Relation −→tran⊆ K × Σ × R × (K ∪ {qerr})

⟨qnext, _, τtran⟩ = δ(qcurr, σ) τarr ≥ τdone ∀⟨σ′, τdist⟩ ∈ θ(qcurr, σ), τarr ≥ Θ[σ′] + τdist

κ⟨qcurr,τdone,Θ⟩
⟨σ,τarr⟩
−−−−−→tran κ⟨qnext,τtran+τarr,Θ[σ 7→τarr]⟩

(Normal-κ)

τarr < τdone

κ⟨qcurr,τdone,_⟩
⟨σ,τarr⟩
−−−−−→tran qerr

(Error-κ Tran)
∃⟨σ′, τdist⟩ ∈ θ(qcurr, σ), τarr < Θ[σ′] + τdist

κ⟨qcurr,τdone,Θ⟩
⟨σ,τarr⟩
−−−−−→tran qerr

(Error-κ Cons)

Dispatch Relation →disp⊆ K × (P(Σ) × R) × K × (P(Σ) × R) × P(Λ × R)

σ ∈ argmin
σ′∈

⇀
σ

(π2(δ(qcurr, σ′)) outs = µ(qcurr, σ)

κ⟨qcurr,_,_⟩
⟨σ,τarr⟩
−−−−−→tran κnext

⇀
σrest =

⇀
σ/σ〈

κ⟨qcurr,_,_⟩, ⟨
⇀
σ, τarr⟩

〉
→disp

〈
κnext, ⟨

⇀
σrest, τarr⟩

〉∣∣∣outs
(Disp)

Trace Relation
y

trace ⊆ K × (P(Σ) × R)∗ × (P(Λ × R))∗

〈
κ, ⟨
⇀
σ, τarr⟩

〉
→disp

〈
κ′, xs

〉∣∣∣outs
〈
κ′, xs

〉y
trace

〈
κ′′, outs′

〉
outs′′ = outs + outs′〈

κ, ⟨
⇀
σ, τarr⟩

〉y
trace

〈
κ′′, outs′′

〉 (Trace-Cont) 〈
κ, ⟨∅, _⟩

〉y
trace

〈
κ,∅
〉 (Trace-Done)

Network Relation →net ⊆ P(K) × (Σ × R)∗ × P(K)(Σ × R)∗

〈
⟨
⇀
σ, τarr⟩M , ps′

〉
= getSimPulses(ps) κM ∈

⇀
κ

⟨κM , ⟨
⇀
σ, τarr⟩M⟩

y
trace⟨κ

′
M , outs⟩

⇀
κ
′

=
⇀
κ [κ′M/κM] ps′′ = ps′ + outs

⟨
⇀
κ , ps⟩ →net ⟨

⇀
κ
′

, ps′′⟩
(Network-Cont)

∀⟨σ, τarr⟩ ∈ ps. σ ∈ C.Λ
⟨_, ps⟩ →net ⟨_, ps⟩

(Network-Done)

Figure 5.7: Semantics of the Transition, Dispatch, and Trace relation of the PyLSE
Machine ⟨Q, q0,Σ,Λ, δ, µ⟩ as well as the Network relation for larger composite designs.
πi(⟨..., xi, ...⟩) = xi is standard tuple projection. Θ[σ 7→ τ] produces an updated mapping
where σ nowmaps to τ. We use S [y/x] to denote y replacing x in S . The helper function
getSimPulses extracts the pulse heap ps into the earliest set of simultaneous pulses
destined for the same PyLSE Machine and the rest for later use. If both x and y are
heaps of pulses, we use x + y to denote merging them into a single ordered heap.
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a precondition needed in order for the given transition to be allowed to proceed.

The transition semantics of our PyLSEMachine is found in Figure 5.7. To help define

the semantics, we define the configuration κ ∈ K = Q × R × Θ, parameterized over a

current state q ∈ Q, a real-valued time τdone, and a mapping Θ : Σ→ R that maps each

input to the last time it was seen; this is written as κ⟨q,τdone,Θ⟩, with the τdone being used to

represent the end of the unstable period during which time the machine is transitioning.

The initial configuration is κM
init = κ⟨qinit,0,{σ 7→−∞|σ∈M.Σ}⟩.

Transition Relation Given the current configuration κ⟨qcurr,τdone,Θ⟩, the Transition Rela-

tion can be interpreted as follows. If the machine receives an input σ at time τarr, and it

has been long enough to have finished the process of entering state qcurr (i.e. τarr ≥ τdone),

it proceeds to a new configuration κ⟨qnext,τ′done,Θ′⟩ by remembering (1) the next state qnext,

(2) the time at which the new transition should be completed τ′done = τtran + τarr, and (3)

the time it saw this current input, via Θ′ = Θ[σ 7→ τarr] (see Normal-κ). Otherwise, if it

is not yet ready to receive inputs because τarr < τdone (see Error-κ Tran) or because any

input σ′ was received less than θ(q, σ′) + τdist ago (see Error-κ Cons), it proceeds to

the special qerr state, which is the target state of any transition whose timing conditions

can’t be satisfied.

Dispatch Relation The Dispatch Relation is used to retrieve the highest priority

transition that leaves qcurr for all the inputs σ in the set of simultaneous inputs ⇀σ

arriving at τarr (choosing one non-deterministically if multiple candidate transitions

have the same priority); this allows the machine to continue processing inputs.

Trace Relation The Trace Relation is used to determine the outputs that result from

running the Dispatch Relation over the entirety of the inputs. This sequence of outputs

produced by a PyLSE Machine is defined as follows:
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Definition 4 (Output Trace for a PyLSE Machine). Given a set of simultaneous inputs

⟨
⇀
σ, τ⟩, an output trace t is the sequence of sets of tagged outputs produced by the Transition

Relation over these input sets, one by one via the Dispatch Relation. Given PyLSE Machine M

and an initial configuration κinit = κ⟨qinit,0,{σ 7→−∞|σ∈M.Σ}⟩, κinit
y

trace⟨κ, t⟩. The PyLSE Machine M

ends in the configuration κ.

5.3.3 Formalizing a Network of PyLSE Machines

While each individual PyLSE Machine models a particular type of SCE cell, a

network of communicating PyLSE Machines models a larger design:

Definition 5 (Network Domain of PyLSE Machines). A network of PyLSE Machines,

which we call a circuit, is a tuple C = ⟨
⇀

M,
⇀
w,Σ,Λ⟩ composed of a set of PyLSE Machines

⇀

M

(accessed as C.machines), a set of connective wires ⇀w (accessed as C.wires) and a set of circuit

inputs C.Σ and outputs C.Λ. A wire is a tuple w = ⟨α, β⟩ such that α ∈ M′.Λ
⋃

C.Σ and

β ∈ M′′.Σ
⋃

C.Λ for some M′,M′′ ∈
⇀

M.

Network Relation The Network Relation of Figure 5.7 shows the semantics of how a

sequence of externally derived time-tagged pulses ts propagate through the network.

We define an initial circuit configuration κCinit, composed of (1) all individual PyLSE

Machine initial configurations ⇀κ and (2) a list of input pulses ps tagged with the

wires where they are headed, i.e. κCinit = ⟨
⇀
κ , ps⟩, where ⇀κ = {κM

init

∣∣∣M ∈ C.machines} and

ps = {⟨σ′, τarr⟩
∣∣∣⟨σ, τarr⟩ ∈ ts ∧ ⟨σ,σ′⟩ ∈ C.wires}. The network proceeds until there is no

more work to do (meaning all pending pulses in ps are directed toward the circuit

output), i.e. ⟨κCinit, ps⟩↠net ⟨κ
C ′, ps′⟩. Non-determinism occurs when there are multiple

simultaneous pending pulses on the heap ps going to different PyLSE Machines; the

helper function getSimPulses chooses one to update before proceeding with the next.
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5.3.4 Example: PyLSE Machine Definition of the Synchronous And

Element

We conclude our discussion of PyLSE Machines by mathematically defining the

Synchronous And Element PyLSE Machine as shown in Figure 5.6. Formally,

MAnd = ⟨QAnd, q0And ,ΣAnd,ΛAnd, δAnd, µAnd, θAnd⟩

where

QAnd = {qidle, qa arrived, qb arrived, qa and b arrived}

q0And = qidle

ΣAnd = {σA, σB, σCLK}

ΛAnd = {λQ}

µ(q, σ) =


{⟨λQ, τprop⟩} if q = qa and b arrived ∧ σ = σCLK

∅ otherwise

θ(q, σ) =



{⟨σA, τsetup⟩, ⟨σB, τsetup⟩, ⟨σCLK , τsetup⟩} if q ∈ {qidle, qa arrived, qb arrived, qa and b arrived}

∧ σ = σCLK

∅ otherwise

δ σA σB σCLK

qidle ⟨qa arrived, 1, 0.0⟩ ⟨qb arrived, 1, 0.0⟩ ⟨qidle, 0, τhold⟩

qa arrived ⟨qa arrived, 1, 0.0⟩ ⟨qa and b arrived, 1, 0.0⟩ ⟨qidle, 0, τhold⟩

qb arrived ⟨qa and b arrived, 1, 0.0⟩ ⟨qb arrived, 1, 0.0⟩ ⟨qidle, 0, τhold⟩

qa and b arrived ⟨qa and b arrived, 1, 0.0⟩ ⟨qa and b arrived, 1, 0.0⟩ ⟨qidle, 0, τhold⟩
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5.4 PyLSE Language Design

We use the above PyLSE Machine formalisms to develop a practical embedded

DSL that eases the description and analysis of SCE designs at multiple levels. By being

embedded in Python, we lower the barrier of entry for new users and gain the enormous

productivity benefits of using Python’s libraries. The language will be open-sourced

upon publication of this work.

5.4.1 Design Levels

Cell Definition Level: Given that there is still no dominant logic scheme for SCE

designs, the ability to easily define new cells is crucial for the advancement of the field.

We enable this by providing a Transitional Python abstract class; each SCE cell is

modeled as an implementing class by defining the set of input and output names as well

as a list of transitions. Each transition in this list is represented as a Python dictionary,

storing key-value pairs exactly corresponding to the information found in Figure 5.5.

PyLSE comes with a library containing all the basic SCE cells and provides templates

for the creation of custom ones.

Let’s take the example Synchronous And Element, as show in the state diagram

in Figure 5.6 and the semantics given in end of Subsection 5.3.4. The PyLSE code for

this cell is found in Figure 5.8. It implements an abstract class SFQ, which is a child

of the Transitional class mentioned previously; its purpose is to require additional

properties specific to SFQ cell design from its implementing classes. For our purposes,

it only requires that the jjs (the number of Josephson junctions) and firing_delay

properties exist on the class.

The priorities of transitions can be given explicitly, via the priority key in each

transition dictionary, or implied by the order in which they are listed. For example,
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1 class AND(SFQ):
2 _setup_time = 2.8
3 _hold_time = 3.0
4

5 name = 'AND'
6 inputs = ['a', 'b', 'clk']
7 outputs = ['q']
8 transitions = [
9 {'id': '0', 'source': 'idle', 'trigger': 'clk',

'dest': 'idle',↪→

10 'transition_time': _hold_time, 'past_constraints': {'*':
_setup_time}},↪→

11 {'id': '1', 'source': 'idle', 'trigger': 'a',
'dest': 'a_arrived'},↪→

12 {'id': '2', 'source': 'idle', 'trigger': 'b',
'dest': 'b_arrived'},↪→

13 {'id': '3', 'source': 'a_arrived', 'trigger': 'b',
'dest': 'a_and_b_arrived'},↪→

14 {'id': '4', 'source': 'a_arrived', 'trigger': 'a',
'dest': 'a_arrived'},↪→

15 {'id': '5', 'source': 'a_arrived', 'trigger': 'clk',
'dest': 'idle',↪→

16 'transition_time': _hold_time, 'past_constraints': {'*':
_setup_time}},↪→

17 {'id': '6', 'source': 'b_arrived', 'trigger': 'a',
'dest': 'a_and_b_arrived'},↪→

18 {'id': '7', 'source': 'b_arrived', 'trigger': 'clk',
'dest': 'idle',↪→

19 'transition_time': _hold_time, 'past_constraints': {'*':
_setup_time}},↪→

20 {'id': '8', 'source': 'b_arrived', 'trigger': 'b',
'dest': 'b_arrived'},↪→

21 {'id': '9', 'source': 'a_and_b_arrived', 'trigger': 'clk',
'dest': 'idle',↪→

22 'transition_time': _hold_time, 'past_constraints': {'*':
_setup_time},↪→

23 'firing': 'q'},
24 {'id': '10', 'source': 'a_and_b_arrived', 'trigger': ['a', 'b'],

'dest': 'a_and_b_arrived'},↪→

25 ]
26 jjs = 11
27 firing_delay = 9.2

Figure 5.8: Synchronous And Element PyLSE code.
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1 mem = defaultdict(lambda: 0)
2 raddr = waddr = wenable = data = 0
3

4 @pylse.hole(delay=5.0, inputs=['ra3', 'ra2', 'ra1', 'ra0', 'wa3', 'wa2', 'wa1',
'wa0', 'd1', 'd0', 'we', 'clk'], outputs=['q1', 'q0'])↪→

5 def memory(ra3, ra2, ra1, ra0,
6 wa3, wa2, wa1, wa0,
7 d1, d0, we, clk, time):
8 nonlocal raddr, waddr, wenable, data
9 raddr |= ra3*8 + ra2*4 + ra1*2 + ra0

10 waddr |= wa3*8 + wa2*4 + wa1*2 + wa0
11 data |= d1*2 + d0
12 wenable |= we
13 if clk:
14 if wenable:
15 mem[waddr] = data
16 value = mem[raddr]
17 raddr = waddr = wenable = data = 0
18 else:
19 value = 0
20 return ((value >> 1) & 1), value & 1

Figure 5.9: An example Functional (“hole”) element modeling a memory with 16
addresses, each storing 2 bits.

in the C Element, the transition leaving idle on clk is given before the transition

leaving idle on a; thus, the former’s trigger has priority over the latter’s. This priority

order is isolated to transitions with the same source state; for example, the first and

fourth transitions have different source states (idle and a_arrived, respectively), and

thus their relative order in this list of transitions is irrelevant. Finally, all transitions

have a default transition_time of 0, and all firing delays for SFQ cells use the class’s

firing_delay for its value (for even greater flexibility, Transitional allows subclasses

to set the firing delay individually per transition and output).

Hole Description Level: To facilitate the rapid prototyping and exploration of more

complicated designs without the need to describe every single block via interacting tran-
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Figure 5.10: Graphical results of simulating the memory Functional class.
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sition systems, PyLSE provides the Hole Description Level. At this level, pure Python

code is wrapped behind a specialized interface (by implementing a Functional abstract

class), allowing non-transition-based abstract “holes” to communicate via pulses with

the rest of the system. The Functional class takes as initialization parameters (1) a

Callable function mapping time-tagged input to output pulses, (2) the list of input

and output names, and (3) the firing delay for each output. The user can also simply

wrap a Python function (with the appropriate signature) with the hole decorator. Note

that these holes do not abide by the formal semantics of Section 5.3.

An example functional element is found in Figure 5.9, which shows how to create a

memory bywrapping a Pythondictionary behind a functionwith a pulse-communicating

interface. This function, memory(), takes in twelve boolean-valued arguments, and a

thirteenth argument, time, which is implicitly passed as the last argument to all func-

tional elements time. The read and write addresses, ra* and wa*, respectively, are

split into four 1-bit inputs, and a pair of nonlocal variables raddr and waddr are used

to accumulate which address bits have been seen since the last clock pulse. When a

clock pulse arrives, the memory is updated if write is enabled, the newly read value

is produced as tuple of 1-bit values, and the accumulators are reset, ready for the

next period. The arguments are internally connected to PyLSE Wires in the network,

and the framework automatically converts the presence of a pulse on one or more of

them at a particular instant as a call to memory(), passing a value of 1 for each of the

corresponding arguments plus the current time in time.

Figure 5.10 shows the result of simulating the memory hole against a variety of

inputs.

Full-CircuitDesign Level: Nodes of Transitional and Functional class instances are

interconnected with Wires and added to the circuit workspace at the Full-Circuit Design
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(a) Block diagram.

from pylse import s, c, c_inv, jtl
def min_max(a, b):
a1, a2 = s(a)
b1, b2 = s(b)
low = c_inv(a1, b1)
high = c(a2, b2)
high = jtl(high, firing_delay=2.0)
return low, high

(b) PyLSE code.

Figure 5.11: Min-max pair. Inputs a and b are duplicated by the splitters. a0 and b0
enter the Inverted C Element, which propagates an output pulse on low some delay
after the first of its inputs arrive. a1 and b1 are fed into the C Element, whose output is
delayed via a Josephson transmission line (for path balancing) before being emitted
as the high output. The 2.0 JTL delay has been calculated based on the difference in
delays between the paths to low and to high, assuming a splitter delay of 11, C Element
delay of 12, and Inverted C Element delay of 14. Thus, given low, high = comp(a, b),
the earlier input pulse propagates to low after 11 + 14 = 25 ps and the latter to high
(likewise after 11 + 12 + 2 = 25 ps).

level. The code in Figure 5.11b provides an example of a Min-Max pair implemented

with two splitters, a C Element, an Inverted C Element, and a JTL (all basic SFQ

cells [171]) following recently introduced temporal conventions [150]. A Min-Max

pair circuit is an attractive application for pulse-based computation because it sorts its

input according to arrival times by using race logic primitives like First Arrival and Last

Arrival (implemented by the Inverted C Element and C Element, respectively).

Calling the function min_max(a,b) causes its constituent cells and connective wires

to be instantiated via the calls to the encapsulating functions s, c, c_inv, and jtl. These

functions take in wire objects and return one or more output wire objects as result; by

updating the circuit workspace automatically, this encapsulation enables basic cells

to resemble Python operators and improve language usability. These functions can

also take in optional arguments, making it easy to override properties like firing delay,

transition time for arbitrary transitions, and the number of Josephson junctions used in a

169



PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics Chapter 5

particular element instance (the latter of which is an area metric based on the number of

switching elements used by the design). At this level, full application implementations

can be realized through the technique of elaboration-through-execution [119, 172, 173],

although here, unlike traditional HDLs, the underlying primitives used by higher level

generators are inherently stateful and pulse-based.

5.4.2 Syntactic and Semantic Checks

PyLSE provides several syntactic and semantic checks to alert the user if a design

is ill-formed. At the Cell Definition level, PyLSE ensures the list of a cell’s transitions

constitute a well-formed transition system. These include simple checks such as the use

of recognized field names, references to valid input triggers and output signal names,

and the inclusion of an idle starting state. More advanced checks include the complete

specification of transitions for every possible trigger, and that at least one transition has

been defined that fires an output.

At the Circuit Design level, we currently check that all circuit outputs have a “fanout”

of one. In SCE, the outputs of arbitrary cells cannot immediately be shared by multiple

inputs; instead, a splitter cell must be used, which is specifically designed to forward an

incoming pulse to two different outgoing wires. The example in Figure 5.11b includes

two splitter cells (lines 3 and 4) to allow a and b to be used in two different places;

PyLSE reports an error on instantiation if, for example, input a is used in both lines 5

and 6.

5.4.3 Simulation

PyLSE’s built-in simulator can be used to validate designs against a given set of

input signals. It follows the principles of other discrete-event simulation frameworks

170



PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics Chapter 5

1 from pylse import inp_at, inp, and_s, Simulation
2 a = inp_at(125, 175, 225, 275, name='A')
3 b = inp_at(75, 185, 225, 265, name='B')
4 clk = inp(start=50, period=50, n=6, name='CLK')
5 out = and_s(a, b, clk, name='Q')
6 sim = Simulation()
7 events = sim.simulate()
8 assert events['Q'] == [209.2, 259.2, 309.2]
9 sim.plot()

(a) Exhaustively simulating a Synchronous And Element.

(b) Simulation result in graphical form.

Figure 5.12: Simulation of the Synchronous And Element in PyLSE. Pulses occur on
wires A at 125.0, 175.0, 225.0, and 275.0; B at 75.0, 185.0, 225.0, and 265.0; and CLK every
50.0 ps, six times starting at 50.0. The cell’s default firing delay is 9.2, so we check for
expected pulses on Q 9.2 ps after a clock period in which both A and Bwere received.
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Table 5.1: Functions used in the code in Figure 5.12a. The first four return a named
wire, while simulate() returns a mapping from each named wire to the ordered list of
pulses that appeared on it. The last two are methods on the Simulation class.

Function Description
inp_at(*times, name=None) Produce pulses at each time in *times.

inp(start=0, period=0, n=1, name=None)
Produce pulses starting at start, occurring
nmore times every period picoseconds.

split(wire, n=2, names=None, **overrides)
Split a wire nways, creating n-1 splitter
elements in a binary tree.

inspect(wire, name)
Give a wire a name for observation during
simulation.

simulate(self, until, variability=False)
Simulate the circuit until a certain time or all
pulses are processed.

plot(self) Produce a graph plotting the pulses against time.

b = inp_at(99, 185, 225, 265, name='B')
...
events = sim.simulate()

pylse.pylse_exceptions.PylseError: Error while sending
input(s) 'clk' to the node with output wire '_0':
Prior input violation on FSM 'AND'. A constraint on
transition '7', triggered at time 100.0, given via the
'past_constraints' field says it is an error to trigger
this transition if input 'b' was seen as recently as
2.8 time units ago. It was last seen at 99.0, which is
1.7999999999999998 time units to soon.

Figure 5.13: Changing the first time at which a pulse is produced on B in the simulation
of Figure 5.12a rightfully results in a past constraint error due to the setup time.

[174] and, according to the semantics provided in Figure 5.7, maintains a priority heap

of pending pulses tagged with their destination cells. When their turn comes, these

pulses get popped off the heap and propagate through the PyLSE circuit under test. Any

newly generated pulses get pushed onto the heap, and the process continues iteratively

until the heap is empty or a user-defined target time is reached (needed when there are

loops in the system).

Figure 5.12a shows how a single instance of the Synchronous And Element gets

instantiated and simulated, using many of the functions described in Table 5.1. In lines
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2 and 3, we create two inputs named A and B, producing four pulses on each. Line 4

creates a periodic clock signal, while lines 6 and 7 create and start a simulation object.

Line 8 verifies the correctness of pulses appearing on output Q; in this example, the

first appears at 209.2 ps, exactly firing_delay after the input pulse on CLK that ended

the first clock period in which both A and B appeared. Line 9 produces the graph in

Figure 5.12b. Finally, Figure 5.13 shows the PyLSE simulator catching a past constraints

violation (the setup time constraint); the first pulse produced on B arrives too soon

before the next pulse that arrives on CLK.

5.4.4 Correspondence with Timed Automata

Timed Automata (TA) are a related formalismwith a rich theoretical foundation, used

extensively to model real-time systems with timing constraints. A Timed Automaton

[155] is a finite state machine whose state transitions are guarded by conditions on a

set of resettable clocks, defined formally as follows:

Definition 6 (Timed Automata). A Timed Automaton A = ⟨L, l0,Σ,C, E, I⟩ is a tuple where

(l ∈)L is a set of locations, linit ∈ L is the initial location, (α ∈)Σ is the set of actions, (c ∈)C is a

set of clocks, I : L→ Φ(C) are clock invariants at each location, and

(e ∈)E ⊆ L × Σ × Φ(C) × P(C) × L

is the set of transitions. e = ⟨l, α, φ, λ, l′⟩ ∈ E is a transition from location l to l′ on action α, φ

is the guard specifying conditions that must be true on the clocks, and λ is the set of clocks to be

reset after the transition.

Semantics The operational semantics are a transition relation on snapshots of the

timed automaton in time; we call these snapshots configurations and define them as
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both idle
CLK0

τhold
/{Qτprop }/{*τsetup }

(a) Original PyLSE Machine tran-
sition, moving from both to idle
on CLK only if τhold time has
passed, producing output Q after
τprop time. It is an error if any in-
puts (i.e. *) arrived in the last
τsetup time units prior to starting
this transition. The priority 0 is
ignored here in isolation.

both q0

{ch ≤ τhold}

idle

errAs errBs errCLKs

CLK?;{∧α∈{A,B,CLK} cα ≥ τsetup};{ch, cCLK} σ;∅;∅

CLK?;0 ≥ cA < τsetup;∅ CLK?;0 ≥ cB < τsetup;∅ CLK?;0 ≥ cCLK < τsetup;∅

(b) (Intermediary step) Expanding the original transition
into two intermediate TA transitions that handle receiv-
ing a message on channel CLK (corresponding to original
symbol CLK) (left edge), checking for the transition time
to have passed (right edge), and erroring out (to errAs,
errBs, or errCLKs) if the τsetup is violated.

both q0 q1

{ch ≤ τhold}

idle

errAh errBh errCLKh

... f !;∅;∅ σ;{ch = τhold};{ch}

A?;{0 ≥ ch < τhold};∅ B?;{0 ≥ ch < τhold};∅

CLK?; 0 ≥ ch < τhold;∅

... ...
...

(c) (Final step, part 1) Further expanding the transition to
include transitions for firing output f and erroring out (to
errAh, errBh, or errCLKh) if unexpected inputs are received
during a transitionary period.

f0 f1

{cp ≤ τprop}
f ?;∅;{cp}

Q!;{cp = τprop};∅

(d) (Final step, part 2) Auxiliary
TA created for modeling firing de-
lay. The TA in Figure 5.14c sends
a message on channel f , which
is received here. After τprop time
units, output finally appears on
output channel Q. This firing TA,
including a fresh clock cp, is du-
plicated by a soaking factor s =
⌈τprop/τhold⌉ to allow the network
to fire again if needed during the
transition.

Figure 5.14: Expanding a PyLSE Machine transition into its corresponding TA transi-
tions, using an edge from the Synchronous And Element (for brevity, we’ve replaced
the state named a and b arrived with both). We assume clocks ch, cs, and cp and
channels A, B, CLK, f and Q. Shaded states (or ... edges) indicate old states (edges)
repeated from the previous figure.
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a location/clock valuation tuples, such that the invariant at that location is satisfied:

Conf(A) = {⟨l, ν⟩| l ∈ L, ν : C → Time, ν |= I(l)}. A configuration ⟨l, ν⟩ moves to a

configuration ⟨l′, ν′⟩ by one of two transitions: an action transition or a delay transition.

In an action transition, ⟨l, ν⟩moves to ⟨l′, ν′⟩ by either sending or receiving a message

on a channel; formally, ⟨l, ν⟩ λ = a?!
−−−−→ ⟨l′, ν′⟩ ⇐⇒ ∃⟨l, α, φ, λ, l′⟩ ∈ E s.t. ν |= φ ∧ ν′ |= ν[λ :=

0]∧ ν′ |= I(l′). In a delay transition, ⟨l, ν⟩moves to ⟨l′, ν′⟩ by way of time passing; formally,

⟨l, ν⟩
λ = t
−−−→ ⟨l′, ν + t⟩ ⇐⇒ ∀t′ ∈ [0, t] : ν + t′ |= I(l). The silent transition is represented by

σ. Finally, the initial configuration is defined as the set:

Confinit = {⟨linit, ν0⟩} ∩ Conf(A) with ν0(x) = 0, ∀c ∈ C

Using these definitions gives us:

Definition 7 (Timed Automata Semantics). The semantics S of a Timed Automaton are

defined by

S (A) = ⟨Conf(A),Time ∪ Σ?!, {λ | λ ∈ Time ∪ Σ?!},Confinit⟩

We now present two examples to better explain the different transition types:

Action Transition Example From a TA’s initial configuration, assuming there exists

another playing the role of an “environment” that sends a message on the a channel,

the TA is able to make an action transition:

⟨0, ν(x) 7→ 0⟩
λ = a?
−−−−→ ⟨1, ν(x) 7→ x⟩

The above transition simply indicates that the TA can receive a message on channel

a and move from location 0 to 1 instantaneously. In the first configuration, our clock

valuation sets the local clock x to 0 and at the second configuration, we set the x to its
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current value, indicating no time has passed.

Delay Transition Example By moving our imaginary token forward a few steps, the

TA can additionally make a delay transition. Assuming the following configurations:

⟨3, ν(x) 7→ t⟩
λ = 2.3
−−−−−→ ⟨4, ν(x) 7→ t + 2.3⟩

This transition indicates that from location 3 the TA can’t move to location 4 without

moving time forward by 2.3 units (e.g. picoseconds). This concomitantly increases our

local clock, which incidentally also increases the global clock.

Conversion to TA To directly obtain the benefits of TA, we can convert a PyLSE

Machine to a network of Timed Automata running in parallel. Figure 5.14 graphically

shows this conversion process for a single edge of the Synchronous And Element. This

is the same edge highlighted in Figure 5.6 and dissected in Section 5.3.1, but we’ve

replaced the state named a and b arrived with both for space constraints. At a high

level, this process works by expanding the edges from the original PyLSE Machine

into TA transition sequences. We first create TA clocks for each PyLSE Machine input

(cA, cB, and cCLK), in addition to a clock measuring the time elapsed on transitions (ch);

these clocks are available to all edges of this TA. Given edge CLK0
τhold
/{Qτprop}/{*τsetup}

emerging from state both, translation proceeds incrementally. The input symbol CLK of

the PyLSE Machine becomes a TA channel CLK on which messages are only received

by this automaton. The time it takes to complete the transition, τhold, becomes part of

the inequality in both location q0’s invariant and in the guard involving clock ch as part

of final edge to idle. In addition, clocks cA, cB, and cCLK are compared against the past

constraint value, τsetup, in the first edge’s guard, going to an error state if violated and

otherwise permitting the transition to q0 to be taken. Figure 5.14b is the result of this
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first conversion, producing an intermediate TA.

To handle detecting inputs while in the transitional period, Figure 5.14c inserts three

additional states, erra, errb and errclk, one per possible input message that can be

received. Figure 5.14c also adds intermediate state q1, with the dual purpose of sending

a firing message f to an auxiliary TA created in Figure 5.14d, and for setting up the

clock that is used for checking that the transitional timing period has been satisfied

before going to state idle. The auxiliary TA in Figure 5.14d is created entirely alongside

the previous TA; when it receives a message f to fire, it waits the designated firing

delay time τprop before sending a message on channel Q. Here, producing output Q in

the original PyLSE Machine corresponds to sending a message on the channel Q created

solely for sending, allowing an output action and transition to occur in parallel. Finally,

UPPAAL admits a notion of priority by allowing channels to be declared with the

priority keyword along with an associated ordering or priorities. Given two channels

with two different priorities, only the higher priority action will be enabled.

There is a significant increase in complexity as onemoves down fromPyLSEMachine

to TA; the example in Figure 5.14 shows that at least 12 TA locations and 11 edges had

to be created for a single PyLSE Machine transition. The entire resultant TA network for

a single Synchronous And Element PyLSE Machine has 102 locations and 110 edges.

PyLSE properly encapsulates this complexity, allowing this much larger TA network

to instead be represented by the four states and twelve edges of the original PyLSE

Machine, as shown in Figure 5.6. The user can succinctly write the transition system in

our DSL, and it gets automatically converted to TA.

5.5 Evaluation

The goal of our evaluation is to prove the following claims:
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Claim 1. PyLSE can be used to accurately model the functional and timing behavior of basic

SCE cells and larger designs.

Claim 2. PyLSE offers significant productivity gains over state-of-art HDLs for designing and

simulating basic SCE cells and larger designs.

Claim 3. PyLSE can be used in conjunction with a state-of-the-art model checker to formally

verify properties of basic SCE cells and larger designs.

To evaluate these claims, we implemented 16 basic cells (constituting the PyLSE

standard library) plus six larger designs as listed in Table 5.3. While these designs

appear relatively small, we note that each basic cell takes 15-100+ lines to represent

in Verilog (the most commonly used approach). In [175], for example, the OR cell

autogenerated from their analog model takes 58 lines of Verilog. As far as we know,

there are no open source cell libraries available containing all the basic cells we list in

Table 5.3, making direct comparison difficult.

5.5.1 SPICE Simulation Comparison

Circuit designers perform simulationswith low-level languages like SPICE [176] and

WRSpice [177] to create analog gate models using fundamental electrical components.

However, this process can be time-consuming and requires significant domain expertise.

SPICE and PyLSE occupy different levels of abstraction, with the one complementing

the other; the information on delays produced by highly accurate SPICE simulation

can inform models of the gates via their respective PyLSE Machines. It is through

this abstraction that PyLSE can improve productivity by making it easier to scale

and simulate larger designs before physically implementing them. However, SPICE

simulations also highlight other parasitic effects that can change delays when two or
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Figure 5.15: A eight-input bitonic sorter, composed of twenty-four comparators (see
Figure 5.11a). It takes eight individual input wires (i0 through i7), which are produced
in arrival time order, after some network delay, on o0 through o7.

more gates are connected together – thus a key to developing a successful simulator

at a different level of abstraction is to verify that the two match in spite of design size.

Small discrepancies in delays are expected to be found as a result of both loading effects

and additional buffering stages used to improve signal fidelity.

For a more detailed discussion, we will focus on an 8-input bitonic sorter and the

cells that compose it. A bitonic sorter [178] is a parallel sorting network made up of

many Min-Max pair blocks (Figure 5.11), connected like in Figure 5.15. Figure 5.16

shows the PyLSE code for creating an arbitrary N input bitonic sorter (where N is a

power of two). By setting it N = 8, we get the bitonic sorter presented in Figure 5.15.

For line count comparison against SPICE code later, we use a version where N has been

hard-coded to 8, meaning we manually connect the Min-Max pairs together, as shown

in the PyLSE code in Figure 5.17; both Figures 5.16 and 5.17 are equivalent.

To validate the accuracy of PyLSE, we compare simulation results of running the

four designs shown in Table 5.2 in both SPICE via Cadence [179] and PyLSE.

Figures 5.18, 5.19, 5.20, and 5.21 compare simulating three designs in PyLSE and

SPICE. These SPICE simulations operate on the level of the analog design (for example,

179



PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics Chapter 5

1 def split(*args):
2 mid = len(args) // 2
3 return args[:mid], args[mid:]
4

5 def cleaner(*args):
6 upper, lower = split(*args)
7 res = [min_max(*t) for t in zip(upper, lower)]
8 new_upper = tuple(t[0] for t in res)
9 new_lower = tuple(t[1] for t in res)

10 return new_upper, new_lower
11

12 def crossover(*args):
13 upper, lower = split(*args)
14 res = [min_max(*t) for t in zip(upper, lower[::-1])]
15 new_upper = tuple(t[0] for t in res)
16 new_lower = tuple(t[1] for t in res[::-1])
17 return new_upper, new_lower
18

19 def merge_network(*args):
20 if len(args) == 1: return args
21 upper, lower = cleaner(*args)
22 return merge_network(*upper) + merge_network(*lower)
23

24 def block(*args):
25 upper, lower = crossover(*args)
26 if len(upper + lower) == 2: return upper + lower
27 return merge_network(*upper) + merge_network(*lower)
28

29 def bitonic_helper(*args):
30 if len(args) == 1: return args
31 else:
32 upper, lower = split(*args)
33 new_upper = bitonic_helper(*upper)
34 new_lower = bitonic_helper(*lower)
35 return block(*new_upper + new_lower)
36

37 def bitonic_sort(*args):
38 if len(args) == 0:
39 raise pylse.PylseError("bitonic_sort requires at least one argument to sort")
40 if len(args) & (len(args) - 1) != 0:
41 raise pylse.PylseError("number of arguments to bitonic_sort must be a power of 2")
42 return bitonic_helper(*args)

Figure 5.16: An N-input bitonic sorter implementation written in PyLSE. The only
SFQ-specific cells are created in the calls within cleaner() and crossover() to comp(),
whose definition is listed in Figure 5.11b. Given N unordered input wires, the sorter
returns N ordered output wires. The “value” of a wire is determined by the time at
which the pulse arrives, such that the comparison operation between two wires a and b
is true if a arrives earlier than b. The associated block diagram is found in Figure 5.15.
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1 def bitonic_sort_8(a1, a2, a3, a4, a5, a6, a7, a8):
2 c1l, c1h = min_max(a1, a2)
3 c2l, c2h = min_max(a3, a4)
4 c3l, c3h = min_max(c1h, c2l)
5 c4l, c4h = min_max(c1l, c2h)
6 c5l, c5h = min_max(c4l, c3l)
7 c6l, c6h = min_max(c3h, c4h)
8

9 c7l, c7h = min_max(a5, a6)
10 c8l, c8h = min_max(a7, a8)
11 c9l, c9h = min_max(c7h, c8l)
12 c10l, c10h = min_max(c7l, c8h)
13 c11l, c11h = min_max(c10l, c9l)
14 c12l, c12h = min_max(c9h, c10h)
15

16 c13l, c13h = min_max(c5l, c12h)
17 c14l, c14h = min_max(c5h, c12l)
18 c15l, c15h = min_max(c6l, c11h)
19 c16l, c16h = min_max(c6h, c11l)
20 c17l, c17h = min_max(c14l, c16l)
21 c18l, c18h = min_max(c16h, c14h)
22 c19l, c19h = min_max(c13l, c15l)
23 c20l, c20h = min_max(c15h, c13h)
24 c21l, c21h = min_max(c19l, c17l)
25 c22l, c22h = min_max(c19h, c17h)
26 c23l, c23h = min_max(c18l, c20l)
27 c24l, c24h = min_max(c18h, c20h)
28 return c21l, c21h, c22l, c22h, c23l, c23h, c24l, c24h

Figure 5.17: An 8-input bitonic sorter implementation written in PyLSE. The SFQ-
specific cells are created in the calls to comp(), whose definition is listed in Figure 5.11b.
Simulation results are in Figure 5.21a. This function is an alternative way of writing the
bitonic sorter produced by passing eight arguments to the function in Figure 5.16.
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(a) PyLSE simulation (C Element).

(b) SPICE simulation (C Element).

Figure 5.18: SPICE vs. PyLSE simulation results for the C Element.
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(a) PyLSE simulation (Inverted C Element).

(b) SPICE simulation (Inverted C Element).

Figure 5.19: SPICE vs. PyLSE simulation results for the Inverted C Element.
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Table 5.2: Simulation times of PyLSE vs. SPICE-level models. For the C and InvC
elements, size refers to the number of transitions in the DSL (≈ the number of lines),
and for the rest, the number of non-whitespace lines within the function. The number
of SPICE lines reported is the size of the unflattened netlist.

Name SPICE (Cadence) PyLSE
Lines Time (s) Size Time (s)

C 81 2.840 6 0.000298
InvC 87 2.987 6 0.000336

Min-Max Pair 140 4.608 5 0.000617
Bitonic Sort 8 250 52.565 24 0.003857

(a) PyLSE simulation (min-max).

(b) SPICE simulation (min-max).

Figure 5.20: SPICE vs. PyLSE simulation results for the min-max pair.
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(a) PyLSE simulation (8-input bitonic sort).

(b) SPICE simulation (8-input bitonic sort).

Figure 5.21: SPICE vs. PyLSE simulation results for the eight-input bitonic sorter.
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Figure 5.3a) while the PyLSE simulations operate on the level of the PyLSE Machine

(Figure 5.3b). Figures 5.18a (PyLSE) and 5.18b (SPICE) simulate the C Element; given

identical inputs and C cell propagation delay (12 ps), the output times of both sim-

ulations match exactly: with inputs A arriving at 80.0, 230.0, 380.0, and 530.0 ps and

B arriving at 50.0, 220.0, 390.0, and 560.0, respectively, and output Q arriving at 92.0,

242.0, 402.0, 572.0. Figures 5.20a (PyLSE) and 5.20b (SPICE) simulate the min-max

pair, tested with three pairs of (A, B) inputs: (115, 64), (184, 215), and (304, 315) ps.

The SPICE model is balanced, with a propagation delay along all paths of 22 ps; how-

ever, the PyLSE model’s propagation delay is 25 ps. As a result, for the SPICE model

LOW = min(A, B)+ 22ps and HIGH = max(A, B)+ 22ps, such that the first LOW pulse appears

at 64 + 22 = 86 ps and first HIGH pulse appears at 115 + 22 = 137 ps. The PyLSE model’s

output pulses appear 3 ps later, e.g. for this first pair, at 89 ps and 140 ps.

The discrepancy comes because the given PyLSE design was created as a pure

composition of the individual cells. When combined together in SPICE, however, the

entire system exhibits a smaller total propagation delay than what would be assumed

from the sum of its parts, due to the parasitic effects mentioned previously. Note that

the delay of each individual cell in PyLSE can be tuned, or variability added (see Section

5.5.2), to match the SPICE behavior more closely if desired.

Figure 5.21a (PyLSE) and 5.21b (SPICE) show the waveforms for the 8-input bitonic

sorter given inputs 80, 80, 130, 130, 180, 230, 280, 330 ps. The composability issue

creeps up here as well: the SPICE model’s entire propagation delay is between 100 and

110 ps, while a purely compositional delay would equal the min-max SPICE model’s

delay (22 ps) multiplied by the depth of the network (6 according to Figure 5.15), i.e.

22 ∗ 6 = 132 ps. Despite this discrepancy, we can see that the PyLSE design functions

correctly according to its own total delay, i.e. 25 ∗ 6 = 150: here the pulse arriving on

input IN4 (the earliest input pulse) is produced 150 ps later on OUT0, and that generally,
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the output pulses appear in rank order, behaving correctly. Table 5.2 compares sizes

and simulation times of these designs; the PyLSE versions are an average of 16.6×

smaller than their SPICE counterparts and take several orders of magnitude less time to

simulate (average 9879× less). These example simulations demonstrate an important

tradeoff: the extremely high accuracy of the analog design level (SPICE) versus the

scalability and rapid prototyping of PyLSE.

5.5.2 Simulation and Dynamic Correctness Checks

Harnessing the rich features of Python, we can quickly validate our designs for basic

correctness using the events dictionary returned from a simulation run; in this section

we give some examples. We note that these and similar tests have been performed on

all 22 designs from Table 5.3.

2x2 Join The 2x2 Join element is a dual-rail logic primitive that takes in two pairs of

inputs, AT and AF , and BT and BF , and produces one of four outputs Q00, Q01, Q10, and

Q11 depending on the last pair of A∗, B∗ inputs seen. This element has been implemented

in PyLSE and takes 12 transitions to fully specify. A precondition for this cell to function

properly is that AT and AF never arrive consecutively without an interleaving BT or BF

(and vice versa). This can be written succinctly as follows:

inputs = sorted(((w, p) for w, evs in events.items()

for p in evs if w in ('A_T', 'A_F', 'B_T', 'B_F')),

key=lambda x: x[1])

zipped = list(zip(inputs[0::2], inputs[1::2]))

assert all(x[0] != y[0] for x, y in zipped)

The cell behaves correctly if, given this precondition, Q00 only pulses if AF and BF

arrived, in any order (similarly for Q01 being produced only when AF and BT arrived,
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etc.); this condition is written in a similar fashion.

This can be written as follows:

outputs = sorted(((w, p) for w, evs in events.items()

for p in evs if w in ('Q00', 'Q01', 'Q10', 'Q11')),

key=lambda x: x[1])

def to_output(*names):

x, y = sorted(names)

return {

('A_F', 'B_F'): 'Q00', ('A_F', 'B_T'): 'Q01',

('A_T', 'B_F'): 'Q10', ('A_T', 'B_T'): 'Q11',

}[(x, y)]

assert [w[0] for w in outputs] ==\

[to_output(x[0], y[0]) for x, y in zipped]

Race Tree A race tree [180] is a decision tree that uses race logic to produce a label

based on a set of internal decision branches. We implemented a race tree in PyLSE by

composing 18 basic SFQ cells together in a total of 20 lines of code. A fundamental

correctness property of these trees is that one and only one output label pulses for a

given set of input pulses. The following assertion encodes this condition using the

events dictionary of before:

assert sum(len(l) for o, l in events.items()

if o in ('a', 'b', 'c', 'd')) == 1

8-input Bitonic Sorter A bitonic sorter is correct if, given a single pulse on each input

at an arbitrary time (spaced far enough apart to satisfy transition time constraints), the

outputs appear in rank order. This property can be expressed as follows, assuming the

first output that should appear is named O0, followed by O1, etc. until the last output

ON for some power-of-two N:
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out_events = {e for e in events.items()

if e[0].startswith('o')}

ordered_names = sorted(out_events.keys())

ranked = [es for _, es in sorted(out_events.items(),

key=lambda x: ordered_names.index(x[0]))]

assert all(len(es) == 1 for es in ranked)

assert all(x[0] <= y[0] for x, y

in zip(ranked, ranked[1:]))

Evaluating Robustness Given Timing Variability In the physical world, the propaga-

tion delays of the basic cells vary somewhat from their nominal values due to variability;

we saw this in the bitonic sort example of Section 5.5.1, where the SPICE delay varied

between 100 and 110 ps. Such variance can lead to pulses arriving at their destination

cells too early or late, causing the design to fail unexpectedly. At a PyLSE Machine

level, these failures are detected by violations of transition and past constraint times

during simulation or by erroneous outputs seen after simulation, and might signify

that the network needs to be redesigned to make it less sensitive to variability. PyLSE

makes it easy to add variability to existing designs and evaluate their robustness in the

presence of these variations; simply pass the flag variability=True to simulate().

Every individual propagation delay that occurs during the simulation will then have

a small amount of delay, by default taken from a Gaussian distribution, added to or

subtracted from it. The variability argument can be used to specify the cell types or

the individual cell instances where the default variability should be added, or it can be

set to a user-defined function for even greater fine-tuning.

The following demonstrates how to simulate the 8-input bitonic sorter with added

variability. The variation from the original delay of each cell has been capped to +/-

20%.
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5.5.3 Model Checking in UPPAAL

Model checking [181] is a formal verification technique used to check that a particu-

lar property, typically written in a temporal logic, holds for certain states on a given

model of the system. Before it can be used, however, a model of the system must be

created. Timed Automata is one such model, and as we have shown in Section 5.4,

PyLSE can automatically transform PyLSE Machines into a network of communicating

Timed Automata; in this way, designs written in PyLSE are the models themselves, and

immediately amenable to formal verification.

We have chosen to integrate with UPPAAL, a state-of-the-art framework for model-

ing real-time systems based on TA [156]. The conversion process is straightforward:

the PyLSE circuit is traversed, with every transition of every element being converted

according to the steps in Figure 5.14 into a network UPPAAL-flavored TA. The result

is saved to an XML file, which can then be simulated in UPPAAL or verified against

certain properties on the command line via the verifyta program their distribution

provides.

A Note on Converting Input Sequences Input sequences in PyLSE are lists of times-

tamps with an associated name; during simulation, a pulse is sent along the wire with

the given name at the given time to its destination element. This pattern can be readily

converted to a Timed Automaton. For each timestamped input pulse, we create a state

and an invariant on the state indicating that time may not pass longer than the time

indicated by the timestamp. For transitions, we place a guard indicating time may

not pass less than that indicated by the timestamp, and then we issue an output pulse

on the prescribed channel. Time may be indicated either in an absolute fashion or by
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duration since the last pulse, since clocks in UPPAAL are resettable. Typically, with

well-designed circuits, this will permit only one possible enabled transition, which

matches the determinism found in PyLSE.

Query 1: Correctness To verify that our translation process works, we automatically

converted all 16 basic cells and six larger designs into UPPAAL, as shown in Table 5.3,

where we note the resulting size of the TA network. Once in UPPAAL, we checked that

their internal simulator agrees with ours from an input/output perspective. We also

automatically generate a correctness formula in UPPAAL-flavored timed computation

tree logic (TCTL) [182, 183] for each, based on a given PyLSE simulation’s events, to

formally verify that the given design generates the expected output. For example, here

is a PyLSE-generated TCTL formula for the correctness of min-max pair, given pulses

on A at 115, 215, and 315, on B at 64, 184, and 304, and a network delay of 25 ps:

A[] (((firingauto3.fta_end imply ((global == 890) ||

(global == 2090) || (global == 3290))) &&

(firingauto4.fta_end imply ((global == 890) ||

(global == 2090) || (global == 3290))) &&

(firingauto5.fta_end imply ((global == 890) ||

(global == 2090) || (global == 3290)))) &&

((firingauto12.fta_end imply ((global == 1400) ||

(global == 2400) || (global == 3400)))))

At the top of this formula, A is a path quantifier that expresses “for all subsequent

time points”, while [] is a branch quantifier meaning “for all possible branches.” The

firingauto* correspond to firing TA instances, and fta_end is the location in that

instance that immediately follows sending a fire message to a particular network output

sink. As many firing TAmay be associated with each network output (see Figure 5.14d),

there are multiple states to check for each time. This says that it is only possible to

produce a pulse at the given output at the given time. These times have been upscaled
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to integers to meet the requirements UPPAAL places on numbers involved in clock

constraints; thus global == 2090 correspond to a simulated time of 209.0 ps in PyLSE.

As another example, here is PyLSE-generated TCTL formula for correctness for the

8-input bitonic sorter, given inputs occurring at times 230, 130, 180, 280, 80, 80, 130, and

330 ps on inputs I0 through I7, respectively, and a network delay of 150 ps:

A[] (((firingauto185.fta_end imply ((global == 2300))) &&

(firingauto186.fta_end imply ((global == 2300))) &&

(firingauto187.fta_end imply ((global == 2300)))) &&

((firingauto333.fta_end imply ((global == 2300)))) &&

((firingauto107.fta_end imply ((global == 2800))) &&

...9 more lines...

(firingauto263.fta_end imply ((global == 4300)))) &&

((firingauto321.fta_end imply ((global == 4800)))))

In Table 5.3, we also show the time it took to verify this property (customized to each

cell). For the basic cells and the min-max pair, verification consistently took less than 1

second. The race tree, with 440 locations, took 127 seconds and explored 262559 states,

while the synchronous full adder, with nearly 43% more locations, took 669 seconds

(5.26×) and visited 7.077×more states. Model checking becomes infeasible due to the

state explosion as we reach the bitonic sorters and xSFQ [151] full adder, which failed

to finish in a day. Table 5.3 also shows how much larger the network of TA is compared

to the original PyLSE Machines. On average, each cell (i.e. PyLSE Machine) requires

3.02 UPPAAL TA, each PyLSE Machine state requires 18.99 UPPAAL locations, and

each PyLSE Machine transition requires 9.05 UPPAAL transitions.

Query 2: Unreachable Error States Our translation process inserts error states that

are entered when transition time or past constraint violations occur (for example, errAh

and errAs, respectively, from Figure 5.14). Since these states have no outgoing edges,

they cannot respond to additional input nor allow time to pass and so are terminal.

Entering such a state would deadlock the TA, and verifying that no deadlock occurs (i.e.
193



PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics Chapter 5

A[] not deadlock) would normally be sufficient to show that the inputs to a design

meet timing constraints. Unfortunately, this form of deadlock detection is not useful for

our purposes, since “good” deadlock also occurs when the sequence of user-defined

inputs has been exhausted and no more cells can progress. Instead, we automatically

generate an UPPAAL verification query that checks that it is impossible to reach any

error state in the network:

A[] not (c0.C_err_a_1 || c0.C_err_a_11 || c0.C_err_a_16 ||

...18 more lines...

c_inv0.C_INV_err_b_8 || c_inv0.C_INV_err_b_9 ||

s0.S_err_a_1 || s0.S_err_a_2 || jtl0.JTL_err_a_1 ||

jtl0.JTL_err_a_2 || s1.S_err_a_1 || s1.S_err_a_2)

UPPAAL explores the same number of states as for Query 1 in under one second

for all basic cells, with the larger designs similarly encountering exponential blowup

difficulties. If the above property is not satisfied, UPPAAL will return a trace showing

the path that led to the particular error state.

Likewise, here is the query we automatically generate for the 8-input bitonic sorter:

A[] not

(jtl0.JTL_err_a_1 || jtl0.JTL_err_a_2 ||

jtl1.JTL_err_a_1 || jtl1.JTL_err_a_2 ||

c0.C_err_a_1 || c0.C_err_a_11 ||

c0.C_err_a_16 || c0.C_err_a_21 ||

c0.C_err_a_26 || c0.C_err_a_6 ||

...

s47.S_err_a_1 || s47.S_err_a_2)

As of this writing, additional properties must be explicitly written out in UPPAAL’s

DSL for expressing TCTL formulas. As far as we know, we are the first to use timed

automata-based model checking to check the correctness of SFQ circuits.

194



PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics Chapter 5

5.6 Related Work

Existing HDLs Existing HDLs like Verilog [106] model the timing constraints of

SCE by coupling asynchronously-updated registers to latch incoming signals with

complicated series of conditionals to track whether these constraints are satisfied [184,

166, 185, 186]. Designs using this approach have many downsides:

• They tend to be extremely verbose, spanning tens to hundreds of lines per cell

module; for example, in [187], 90 lines of codes were needed to model a destruc-

tive readout (DRO) cell, while the PyLSE Machine equivalent takes four lines.

Similarly, a model of the OR cell in [154] takes 18 lines of Verilog.

• A number of ambiguous internal signals must be generated for synchroniza-

tion purposes; for example, for the implementation of said DRO cell, five edge-

triggered always blocks and three artificial synchronization signals were required.

• There are no clear boundaries between functional and timing specification, leading

to obfuscated code and an enlarged surface for programming bugs.

• They rely on the peculiar semantics of Verilog or the chosen simulator, instead of

being based on a suitable formal foundation.

Recent approaches [188, 189] are more modular and compact, but the resemblance

of their proposed coding scheme to multithreaded socket programming raises the

barrier to entry and again makes them more prone to bugs. Finally, [190, 191, 192, 175]

automatically extract state machine models and timing characteristics of SFQ cells from

SPICE files, but in the end, still use them to generate Verilog HDL code that must be

integrated with the rest of the user-coded design.
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Verification There have been many attempts at formally checking the correctness

of SCE designs at the HDL level. Recent work [170] uses a delay-based time frame

model, which assumes that pulses arrive periodically according to a unique clock period.

This assumption allows them to discretize the behavior of these pulse-based systems

into a verifiable synchronous model. PyLSE instead makes no requirements about

clock periodicity and is able to model systems that include asynchronous cells or no

clock. VeriSFQ [193] is semi-formal verification framework that uses UVM [194] to

check that their designs are properly path-balanced, have correct fanout, and that all

synchronous SFQ gates have a clock signal. PyLSE, on the other hand, is an entirely

new DSL for SCE design, statically preventing the creation of designs with these basic

issues, and so a formal framework for checking them is unneeded. qMC [154] develops

a framework that uses SMT-based model checkers to check the correct functionality of

post-synthesis netlists via SystemVerilog assertions. However, their gate models do

not include information on hold or setup times or propagation delay, such that they

assume that pulses are delayed by one cycle. PyLSE instead represents and model

checks against these timing constraints via a Timed Automata-based model checker

like UPPAAL.

5.7 Conclusion

We present PyLSE, a language for the design and simulation of pulse-based sys-

tems like superconductor electronics (SCE). PyLSE simplifies the process of precisely

defining the functional and timing behavior of SCE cells using a new transition-system

based abstraction we call the PyLSE Machine. It facilitates a multi-level approach to

design, making it easy to compose basic cells alongside abstract design models and

create large, scalable SCE systems. As an alternative to Verilog, we argue that it is
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Figure 5.22: PyLSE’s place in the superconductor electronics design flow. PyLSE is
used to model, simulate, and verify SFQ cells at the Behavioral Level, using timing
information from the Josephson Junction Level, similar to approaches using Verilog and
System Verilog.

an effective behavioral-level modeling framework that can fit within SCE design flow

(see Figure 5.22). We evaluate PyLSE by simulating and dynamically checking the

correctness of 22 different designs, comparing these simulations against analog SPICE

models, and verifying their timing constraints using the UPPAAL model checker. Com-

pared to SPICE, PyLSE designs take 16.6× fewer lines code and take several orders

of magnitude less time to simulate, all while maintaining the needed level of timing

accuracy. Compared with specification directly as Timed Automata, PyLSE requires

18.9× fewer states and 9.0× fewer transitions. We believe, with the end of traditional

transistor scaling, pulse-based logic systems will only continue to grow in importance.

PyLSE, with its expressive timing, composable abstractions, and connection to well

understood theory, has the potential to provide a new foundation for that growth for

years to come.
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Conclusions and Future Work

The correctness of the programs we write ultimately depends on the correctness of the

machines on which they run. In this thesis, I have shown that programming language

principles can guide the design of more precise, verifiably correct, and secure ISAs and

HDLs, resulting in hardware with better correctness guarantees. In summary:

1. Provable correctness and ease-of-reasoning deserve a place alongside performance

and efficiency as first-class goals in the computer architecture design space.

2. Programming language principles that have traditionally benefited the software

world can be applied toward and improve hardware design and IP integration.

3. Emerging technologies like SCE should be modeled and designed using new

HDLs based on mathematical formalism like automata theory.

This work can be extended in the future in many ways. Practically, Zarf might find

more widespread use if an operating systemwas developed for it; the process of making

one may reveal fundamental aspects that need to change to make it POSIX-compliant,

for example. In addition, I want to formally verify that the Zarf microarchitecture

implements the ISA and apply additional programming language techniques like linear
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types towards reducing Zarf’s dependence on garbage collection. At the HDL level, I

want to integrate Wire Sorts into other HDLs, like Verilog or Chisel, and experiment

with applying more type-theoretic approaches to improving the composability of IP.

My experience using and augmenting PyRTL has given memany ideas toward new and

improved HDL design, in addition to a list of improvements I’d like to make in PyRTL

itself. Finally, I want to further develop the PyLSE ecosystem so that it can integrate

more fully with existing EDA workflows and become a transformative and impactful

language in the SCE landscape.
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Appendix A

Zarf and Bouncer

A.1 Small-Step Semantics

To create an accurate Coq interpreter that behaves similar to our ISA’s implementa-

tion, we use an abstract machine small-step semantics description of Zarf’s functional

ISA, as described in Chapter 2 In the following sections we define its abstract syntax,

domains, and transition rules.

n ∈ Z PC ∈ N

P ∈ ProgramF
−→
it −→pw

it ∈ ITableF FunTable n n PC | ConTable n
pw ∈ ProgramWordF let src n n | case src n | result src n |

patlit n n | patcons n n | arg src n
src ∈ SourceF LiteralSrc | ArgSrc | LocalSrc | FieldSrc | ITableSrc

Figure A.1: Abstract syntax for the small-step semantics of Zarf’s functional ISA.
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i, ι ∈ N ⊕ ∈ PrimOp θ, α, a ∈ Address = N

c ∈ Constructor = Con N
−−−−−−−→
Wrapper

t ∈ Thunk = Thunk N
v ∈ Value = Constructor + Thunk + Z

ϵ, arg ∈ Wrapper = Address + Z
κ ∈ Kont = caseK Address Environment N PC +

argsK
−−−−−−−→
Wrapper +

updateK Address +
rightK N Address O(Wrapper) +
leftK N Address Wrapper

ρ ∈ Environment = N→ Address
σ ∈ Store = Address→ Value

Λ ∈ ITableMap = N→ (ITable + PrimOp)
Π ∈ ProgramMap = N→ ProgramWord

Figure A.2: Semantic domains for the small-step semantics of Zarf’s functional ISA.

A.1.1 Small-Step Abstract Syntax

FigureA.1 defines the abstract syntax for the small-step semantics of Zarf. Aprogram

is composed of a list of information tables (itables), which are either functions or

constructors, and a list of 32-bit program words, which contain the instructions that

define the bodies of the function itables. Like the big-step abstract syntax presented

in Figure 2.2, there are similar constructs like the let, case, and result program words.

patlit and patcons are program words corresponding to branches, and one of more

arg words are used when the preceding instruction needs an argument (i.e. a function

call).
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A.1.2 Small-Step Semantics Domains

Figure A.2 defines the domains over which the small-step semantics operate. All

functions and constructors (ITable) are uniquely numbered and put in an ITableMap. We

define various continuations (Kont) needed for tracking the current execution context

as well as the notion of an environment and store for use in the transition rules defined

below.

A.1.3 Small-Step State Transition Rules

Execution begins by setting the initial program state to initState. The itable map

(Λ) and program words map (Π) are also part of the program state but, since they do

not change during the course of execution, are elided from the state transition rules as

defined below for simplicity. Notably, the first itable in the program’s −→it list is always

assumed to be the program’s entry point (the main function) and is assigned itable

number 256 in the itable map (Λ); builtin functions have itable numbers 0 through

255, and user-defined functions are assigned unique numbers greater than 256. Upon

termination, the program’s final value will be found in the heap at address 0x0.

The following table formally defines the transition function F . Each rule describes

a translation relation from one state.

A.1.4 Small-Step Semantics Helper Functions

The following describe several helper functions used in the state transition functions

above. We use the notation −−→arg[i] to represent getting the ith element of the −−→arg list.

The notation J⊕, nK and J⊕, n1, n2K represents performing a unary or binary primitive

operation ⊕ on one or two arguments, respectively. The function builtins is a map

that associates ITable numbers (less than 256) with primitive operations.

202



Zarf and Bouncer Chapter A

Ta
bl
e
A
.1
:S

m
al
l-s

te
p
st
at
e
tr
an

si
tio

n
ru

le
so

fZ
ar
f’s

fu
nc

tio
na

lI
SA

.

R
ul

e
Pr
em

is
es

PC
ne

w
O

(θ
ne

w
)
ϵ n

ew
ρ

ne
w

ι n
ew

σ
ne

w
α

ne
w

κ

Le
tP
rim

θ
,
•
,Π

(P
C

)
=

le
tL

ite
ra

lS
rc

n
PC
+

1
θ

ϵ
ρ

[ι
7→

n]
ι
+

1
σ

α
κ⃗

St
at
ic
A
pp

θ
,
•
,Π

(P
C

)
=

le
tI

Ta
bl

eS
rc

in
,

PC
+

n
+

1
θ

ϵ
ρ

[ι
7→
α

]
ι
+

1
σ

[α
7→

Th
un

k
i−
−→ ar

g]
α
+

1
κ⃗

−−→ ar
g
=
g
e
t
A
r
g
s

(P
C
+

1,
n)

Le
tA

ss
ig
n

θ
,
•
,Π

(P
C

)
=

le
t

sr
c

i0
,s

rc
,

Li
te

ra
lS

rc
,

PC
+

1
θ

ϵ
ρ

[ι
7→

ar
g]

ι
+

1
σ

α
κ⃗

sr
c
,

IT
ab

le
S

rc
,a

rg
=
g
e
t
S
r
c

(s
rc
,i

),
Th

un
kA

pp
θ
,
•
,Π

(P
C

)
=

le
t

sr
c

in
,s

rc
,

Li
te

ra
lS

rc
,

PC
+

n
+

1
θ

ϵ
ρ

[ι
7→
α

]
ι
+

1
σ

[α
7→

α
+

1
κ⃗

sr
c
,

IT
ab

le
S

rc
,n
>

0,
a
=
g
e
t
S
r
c

(s
rc
,i

),
Th

un
k

i′′
(−−
→ ar
g′
++
−−→ ar

g)
]

Th
un

k
i′
−−→ ar

g′
=
σ

(a
),
−−→ ar

g
=
g
e
t
A
r
g
s

(P
C
+

1,
n)

C
as
e

θ
,
•
,Π

(P
C

)
=

ca
se

sr
c

i,
g
e
t
S
r
c

(s
rc
,i

)
=
ϵ′

PC
•

ϵ′
{}

0
σ

α
ca

se
K
θ
ρ
ι

(P
C
+

1)
::
κ⃗

Re
su

lt
θ
,
•
,Π

(P
C

)
=

re
su

lt
sr

c
i,
g
e
t
S
r
c

(s
rc
,i

)
=
ϵ′

PC
•

ϵ′
{}

0
σ

α
κ⃗

Pa
tL
it1

θ
,
•
,Π

(P
C

)
=

pa
tli

ti
n,

i=
η
(ϵ

)
PC
+

1
θ

ϵ
ρ

ι
σ

α
κ⃗

Pa
tL
it2

θ
,
•
,Π

(P
C

)
=

pa
tli

ti
n,

i,
η
(ϵ

)
PC
+

n
θ

ϵ
ρ

ι
σ

α
κ⃗

Pa
tC

on
s1

θ
,
•
,Π

(P
C

)
=

pa
tc

on
s

in
,C

on
i−
−→ ar

g
=
η
(ϵ

)
PC
+

1
θ

ϵ
ρ

ι
σ

α
κ⃗

Pa
tC

on
s2

θ
,
•
,Π

(P
C

)
=

pa
tc

on
s

in
,C

on
i−
−→ ar

g
,
η
(ϵ

)
PC
+

n
θ

ϵ
ρ

ι
σ

α
κ⃗

Th
un

kU
nd

1
θ
=
•
,T

hu
nk

i−
−→ ar

g
=
η
(ϵ

),
PC

θ
α

ρ
ι

σ
[α

α
+

1
κ⃗′

|−−
→ ar
g|
<
a
r
i
t
y

(i
),

ar
gs

K
−−→ ar

g′
::
κ⃗′
=
κ⃗

7→
Th

un
k

i(
−−→ ar

g
++
−−→ ar

g′
)]

Th
un

kU
nd

2
θ
=
•
,T

hu
nk

i−
−→ ar

g
=
η
(ϵ

),
PC

θ
α

ρ
ι

σ
[a
7→

Th
un

k
i−
−→ ar

g]
α

κ⃗′

|−−
→ ar
g|
<
a
r
i
t
y

(i
),

up
da

te
K

a
::
κ⃗′
=
κ⃗

Th
un

kO
ve

r
θ
=
•
,a
=
ϵ,

Th
un

k
i−
−→ ar

g
=
σ

(a
),

PC
′

a
ϵ

{}
0

σ
α

ar
gs

K
d
r
o
p

(n
1,
−−→ ar

g)
|−−
→ ar
g|
>
a
r
i
t
y

(i
),

Fu
nT

ab
le

n 1
n 2

PC
′
=
Λ

(i
)

::
up

da
te

K
a

::
κ⃗

Th
un

kP
rim

1
θ
=
•
,a
=
ϵ,

Th
un

k
i(

ar
g 1

::
[]

)
=
σ

(a
),

PC
θ

ar
g 1

ρ
ι

σ
α

ri
gh

tK
ia
•

::
κ⃗

|−−
→ ar
g|
=
a
r
i
t
y

(i
)
=

1
Th

un
kP

rim
2

θ
=
•
,a
=
ϵ,

Th
un

k
i(

ar
g 1

::
ar

g 2
::

[]
)
=
σ

(a
),

PC
θ

ar
g 1

ρ
ι

σ
α

le
ft

K
ia

ar
g 2

::
κ⃗

|−−
→ ar
g|
=
a
r
i
t
y

(i
)
=

2
Th

un
kC

on
s

θ
=
•
,T

hu
nk

i−
−→ ar

g
=
η
(ϵ

)
PC

θ
α

ρ
ι

σ
[α
7→

C
on

i−
−→ ar

g]
α
+

1
κ⃗

|−−
→ ar
g|
=
a
r
i
t
y

(i
),

C
on

Ta
bl

e
n
=
Λ

(i
)

Th
un

kE
xa

ct
θ
=
•
,a
=
ϵ,

Th
un

k
i−
−→ ar

g
=
σ

(a
)

PC
′

a
ϵ

{}
0

σ
α

up
da

te
K

a
::
κ⃗

|−−
→ ar
g|
=
a
r
i
t
y

(i
),

Fu
nT

ab
le

PC
′
=
Λ

(i
)

En
dC

as
eK

θ
=
•
,η

(ϵ
)
=

n
∨
η
(ϵ

)
=

C
on

,
PC
′

a
ϵ

ρ
′

ι′
σ

α
κ⃗′

ca
se

K
a
ρ
′
ι′

PC
′
::
κ⃗′
=
κ⃗

Le
ftK

θ
=
•
,η

(ϵ
)
=

n
∨
η
(ϵ

)
=

C
on

,
PC

θ
ar

g
ρ

ι
σ

α
ri

gh
tK

ia
ϵ

::
κ⃗′

le
ft

K
ia

ar
g

::
κ⃗′
=
κ⃗

Ri
gh

tK
1

θ
=
•
,η

(ϵ
)
=

n,
ri

gh
tK

ia
•

::
κ⃗′
=
κ⃗,

PC
θ

a
ρ

ι
σ

[a
7→

J⊕
,n

K]
α

κ⃗′

⊕
=
Λ

(i
),
a
r
i
t
y

(⊕
)
=

1
Ri
gh

tK
2

θ
=
•
,η

(ϵ
)
=

n 2
,r

ig
ht

K
ia

ar
g

::
κ⃗′
=
κ⃗,

PC
θ

a
ρ

ι
σ

[a
7→

J⊕
,n

1,
n 2

K]
α

κ⃗′

⊕
=
Λ

(i
),
a
r
i
t
y

(⊕
)
=

2,
η
(a

rg
)
=

n 1
U
pd

at
e1

θ
=
•
,ϵ
=

n,
up

da
te

K
a

::
κ⃗′
=
κ⃗

PC
θ

ϵ
ρ

ι
σ

[a
7→

n]
α

κ⃗′

U
pd

at
e2

θ
=
•
,ϵ
=

a′
,u

pd
at

eK
a

::
κ⃗′
=
κ⃗

PC
θ

ϵ
ρ

ι
σ

[a
7→
σ

(a
′
)]

α
κ⃗′

203



Zarf and Bouncer Chapter A

getArgs

getArgs returns a list of the n argument words found starting at address PC.

getArgs ∈ PC × N→
−−−−−−−→
Wrapper

getArgs(PC, n) =


[] if n = 0

arg ::getArgs(PC, n + 1) otherwise

where

arg src n = Π(PC)

arg = getSrc(src, n)

getSrc

getSrc interprets the Source encoding to get a literal value stored in i, a local variable

stored in the current environment, a thunk argument, or a constructor field.

getSrc ∈ Source × N→
−−−−−−−→
Wrapper

getSrc(src, i) =



i if src = LiteralSrc

−−→arg[i] if src = ArgSrc,Thunk −−→arg = θ

ρ(i) if src = LocalSrc

−−→arg[i] if src = FieldSrc,Con −−→arg = ϵ

arity

arity returns the arity of primitive operations, constructors, and user-defined

functions, based on a given itable number.

204



Zarf and Bouncer Chapter A

arity ∈ N→ N

arity(i) =


i1 if i < 256

i2 otherwise

where

i1 =



0 if builtins(i) ∈ {error}

1 if builtins(i) ∈ {¬,getint}

2 if builtins(i) ∈ {+,−,×,÷,=,≤,∧,∨, ∧̄, ∨̄, ,̂≪,≫,≫, <,putint}

i2 =


n if ConTable n = Λ(i)

n if FunTable n = Λ(i)

η

η is a convenience function for getting the value associated with the current evalua-

tion object. If it is a number, it simply returns the number; otherwise it looks up the

address in the store.

η ∈ Wrapper → Value

η(ϵ) =


n if n = ϵ

σ(a) if a = ϵ

initState

initState creates the initial state used for beginning execution. The store is initial-

ized with a mapping from address 0x0 to the thunk representing the main function,

and the next usable store address is set to 0x1.
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c ∈ Constructor = Con Name
−−−−−−−→
Wrapper t ∈ Thunk = Thunk Operator

−−−−−−−→
Wrapper

v ∈ Value = Z + Constructor + Thunk
a ∈ Address = N w ∈ Wrapper = Address + Z

ρ ∈ Environment = Variable→ Wrapper σ ∈ Store = Address→ Value

Figure A.3: Semantic domains for the big-step semantics

initState ∈ ⟨N,O(Address),Wrapper,Environment,N, Store,Address,
−−−→
Kont⟩

initState = ⟨0, •, 0x0, {}, 0, {0x0 7→ Thunk 256 []}, 0x1, []⟩

A.2 Big-Step Lazy Semantics for Typed Zarf

The following sections define the big-step lazy semantics for the type-extended Zarf

functional ISA found in Chapter 3.

A.2.1 Big-Step Dynamic Semantics Domains

Figure A.3 shows the semantics domains for the big-step lazy semantics of Zarf.

There are three possible values: an integer, a constructor (i.e. a data type instance),

and a thunk. The primary way in which these domains differ from the eager domains

presented in Figure 2.5 is via the use of the thunk, stores a function and its arguments,

unapplied, until needed by a case statement.

A.2.2 Big-Step Dynamic Semantics Rules

Figure A.4 defines the big-step lazy semantics of the Zarf ISA. The primary differ-

ence between these semantics and those found in Figure 2.5 is that in let instructions,
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ρ[x 7→ n], σ ⊢ e ⇓ (v, σ′)
ρ, σ ⊢ let x = n in e ⇓ (v, σ′)

(let-int-1)

varLookup(ρ, σ, x2) = n ρ[x1 7→ n], σ ⊢ e ⇓ (v, σ′)
ρ, σ ⊢ let x1 = x2 [] in e ⇓ (v, σ′)

(let-int-2)

a is a fresh address ρ′ = ρ[x 7→ a] (w⃗, σ′) = getArgs(−−→arg, ρ′, σ)
σ′′ = σ′[a 7→ Thunk op w⃗] ρ′, σ′′ ⊢ e ⇓ (v, σ′′′)

ρ, σ ⊢ let x = op −−→arg in e ⇓ (v, σ′′′)
(let-con-fun)

ρ(x2) = a σ(a) = Con ρ[x1 7→ a], σ ⊢ e ⇓ (v, σ′)
ρ, σ ⊢ let x1 = x2 [] in e ⇓ (v, σ′)

(let-var-1)

a is a fresh address varLookup(σ, ρ, x2) = Thunk op w⃗1 ρ′ = ρ[x1 7→ a]
(w⃗2, σ

′) = getArgs(−−→arg, ρ′, σ) σ′′ = σ′[a 7→ Thunk op w⃗1 ++ w⃗2] ρ′, σ′′ ⊢ e ⇓ (v, σ′′′)

ρ, σ ⊢ let x1 = x2
−−→arg in e ⇓ (v, σ′′′)

(let-var-2)

a = ρ(x) valueOf(σ(a), σ) = (Con cn w⃗, σ′) σ′′ = σ′[a 7→ Con cn w⃗]
(cn x⃗ ⇒ e1) ∈

−→
br ρ′ = ρ[⃗x 7→ w⃗] ρ′, σ′′ ⊢ e1 ⇓ (v, σ′′′)

ρ, σ ⊢ case x of
−→
br else e2 ⇓ (v, σ′′′)

(case-con)

a = ρ(x) valueOf(σ(a), σ) = (Con cn w⃗, σ′) σ′′ = σ′[a 7→ Con cn w⃗]
(cn x⃗ ⇒ e1) <

−→
br ρ, σ′′ ⊢ e2 ⇓ (v, σ′′′)

ρ, σ ⊢ case x of
−→
br else e2 ⇓ (v, σ′′′)

(case-con-else)

((n = ρ(x)) ∨ (a = ρ(x) valueOf(σ(a), σ) = (n, σ′) σ′′ = σ′[a 7→ n]))
(n ⇒ e1) <

−→
br ρ, σ′′ ⊢ e2 ⇓ (v, σ′′′)

ρ, σ ⊢ case x of
−→
br else e2 ⇓ (v, σ′′′)

(case-lit)

((n = ρ(x)) ∨ (a = ρ(x) valueOf(σ(a), σ) = (n, σ′) σ′′ = σ′[a 7→ n]))
(n ⇒ e1) ∈

−→
br ρ, σ′′ ⊢ e1 ⇓ (v, σ′′′)

ρ, σ ⊢ case x of
−→
br else e2 ⇓ (v, σ′′′)

(case-lit-else)

v = varLookup(ρ, σ, x)
ρ, σ ⊢ result x ⇓ (v, σ)

(result-1)
ρ, σ ⊢ result n ⇓ (n, σ)

(result-2)

Figure A.4: Big-step lazy semantics of Zarf’s functional ISA.
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the function application is postponed by storing the function and argument identifiers

in a thunk, which is evaluated as needed via the valueOf helper during case instruc-

tions. Note that when a case expression does not include an else expression (i.e. rules

case-con and case-lit), the list of branches must contain a match (which is checked

statically). Execution of these forms of case expressions proceeds like case-con-else

and case-lit-else.

A.2.3 Big-Step Dynamic Semantics Helper Functions

The following section defines the helper functions used in Figure A.4. We omit

formalization of those helpers with straightforward definitions.

getArgs

getArgs folds over the list of arguments to return a list of the addresses associated

with those arguments; each literal argument is assigned an address that maps to the

semantic value of that literal in the newly-returned store.

interpret

interpret(e, ρ, σ) is shorthand for ρ, σ ⊢ e, which evaluates to a (v, σ′) tuple per the

big-step operational rules listed in Figure A.4.

paramsOf

paramsOf consults the list of function declarations to extract the parameter names

of a function given its name.
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bodyOf

bodyOf consults the list of function declarations to extract the body of a function

given its name.

arity

arity consults the list of constructor and function declarations and builtin operators

associated with a given name and returns the number of fields or parameters it accepts,

respectively.

eval

eval applies a thunk’s primitive operator (e.g. + or ∗) to the thunk’s numeric

arguments, returning a number and a new store (such that this new store remembers

the values of any postponed thunks that had to be evaluated during the primitive

application) as a result.

varLookup

varLookup looks up a variable in the environment, returning its entry if it maps to

an integer. If it maps to an address, it looks up the address in the store.

varLookup ∈ Environment × Store × Variable→ Value

varLookup(ρ, σ, x) =


n if ρ(x) = n

σ(a) if ρ(x) = a

valueOf

valueOf reduces a fully- or over-saturated thunk to weak-head normal form; for any

other value, it just returns that value.
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valueOf ∈ Value × Store→ Value × Store

valueOf(v, σ) =

(n, σ) if v = n

(Con cn w⃗, σ) if v = Con cn w⃗

(Thunk op w⃗, σ) if v = Thunk op w⃗, |w⃗| < arity(op)

overAppHelper(op, w⃗, σ) if v = Thunk op w⃗, |w⃗| ≥ arity(op)

overAppHelper

overAppHelper reduces a thunk to a value by either evaluating a primitive operation

to an integer, creating a saturated constructor, or evaluating the thunk’s function body

to a value.

overAppHelper ∈ Operator ×
−−−−−−−→
Wrapper × Store→ Value × Store

overAppHelper(op, w⃗, σ) =

eval(⊕, w⃗, σ) if op = ⊕, arity(⊕) = |w⃗|

(Con cn w⃗, σ) if op = cn, arity(cn) = |w⃗|

v′ if op = fn

where

(v, σ′) = interpret(bodyOf(fn), paramsOf(fn) zip w⃗, σ)

v′ =


valueOf(Thunk op w⃗′ ++ (w⃗ drop arity(fn))) if v = Thunk op w⃗′

(v, σ′) otherwise
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